phân tích đa thức thành nhân tử
\(3a^2c^2+bd+3abc+acd\)
phân tích đa thức thành nhân tử:
3a2c2+bd+3abc+acd
3a2c2+bd+3abc+acd=3ac(ac+b)+d(ac+b)=(3ac+d)(ac+b)
phân tích đa thức thành nhân tử ?
a.25-x2+4xy-4y2
b.3a^2c^2+bd+3abc+acd
c.x^3-2x^2-x+2
d.a4+5a3+15a-9
a) 25 - x2 + 4xy - 4y2 = 25 - (x2 - 4xy + 4y2) = 52 - (x - 2y)2 = (5 + x - 2y)(5 - x +2y) = (x - 2y + 5)(2y - x + 5)
b) 3a2c2 + bd + 3abc + acd = (3a2c2 + 3abc) + (bd + acd) = 3ac(ac + b) + d (ac + b) = (ac + b)(3ac + d)
c) x3 - 2x2 - x + 2 = x2(x - 2) - (x - 2) = (x - 2)(x2 - 1) = (x - 2)(x - 1)(x + 1)
d) a4 + 5a3 + 15a - 9 = (a4 + 3a2) + (5a3 + 15a) - (3a2 + 9) = a2(a2 + 3) + 5a(a2 + 3) - 3(a2 + 3) = (a2 + 3)(a2 + 5a - 3)
Phân tích đa thức thành nhân tử
A, 3a^2c^2+bd+3abc+acd
B, a^2c-a^2.d-b^2.d+b^2.c
C, 8x^2+4xy-2ax-ay
D, x^2-y^2-2xy-y^2
E, 3a^2-6ab+3b^2-12c^2
Giup mk nha do j mk can on trc :3
\(A=3a^2c^2+bd+3abc+acd=\left(3a^2c^2+3abc\right)+\left(bd+acd\right)=3ac\left(ac+b\right)+d\left(b+ac\right)\\ =\left(3ac+d\right)\left(ac+b\right)\)
\(B=a^2c-a^2d-b^2d+b^2c=a^2\left(c-d\right)-b^2\left(c-d\right)=\left(a^2-b^2\right)\left(c-d\right)\\=\left(a-b\right)\left(a+b\right)\left(c-d\right)\)
\(C=8x^2+4xy-2ax-ay=\left(8x^2+4xy\right)-\left(2ax+ay\right)=4x\left(2x+y\right)-a\left(2x+y\right)\\ =\left(4x-a\right)\left(2x+y\right)\)
\(E=3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2\right)-12c^2=3\left(a-b\right)^2-12c^2\\ =3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Phân tích đa thức thành nhân tử
A, 3a^2c^2+bd+3abc+acd
B, a^2.c-a^2.d-b^2.d+b^2.c
C, 8x^2-4xy-2ax-ay
D, x^2-y^2-2yz-y^2
E, 3a^2-6ab+3b^2-12c^2
F, x^3-2xy+y^2-m^2+2mn-n^2
G, x^4-x^3y-x+y
H, x^3-4x^2+8x+8
Giup mk nha you do hoc roi
phân tíchthành nhân tử
a/x^3+3x^2+6x+4
b/3a^2c^2+bd+3abc+acd
c/3a^2-6ab+3b^2-12c^2
d/x^2+y^2-x^2y^2+xy-x-y
e/a^6-b^6
\(x^3+3x^2+6x+4=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)\)
\(=\left(x+1\right)x^2+2x.\left(x+1\right)+4.\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
a) \(x^3+3x^2+6x+4\)
\(=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
b) \(3a^2c^2+bd+3abc+acd\)
\(=\left(3a^2c^2+acd\right)+\left(3abc+bd\right)\)
\(=ac\left(3ac+d\right)+b\left(3ac+d\right)\)
\(=\left(ac+b\right)\left(d+3ac\right)\)
c) \(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)\)
\(=3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
d) \(x^2+y^2-x^2y^2+xy-x-y\)
\(=\left(x^2y+xy^2+x^2y^2\right)-\left(x^2+xy+x^2y\right)-\left(xy+y^2+xy^2\right)+\left(x+y+xy\right)\)
\(=xy\left(x+y+xy\right)-x\left(x+y+xy\right)-y\left(x+y+xy\right)+\left(x+y+xy\right)\)
\(=\left(xy-x-y+1\right)\left(x+y+xy\right)\)
\(=\left(x-1\right)\left(y-1\right)\left(x+y+xy\right)\)
e) \(a^6-b^6=\left(a^3-b^3\right)\left(a^3+b^3\right)=\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)
1. Phân tích đa thức thành nhân tử
a) 1 - y2 + 6xy2 - 12x2y + 8x3
b) (x - z)2 - y2 +2y - 1
c) 1 - 2a + 2bc + a2 - b2 - c2
d) x2 + 3cd (2 - 3cd) - 10xy - 1 + 25y2
2. Phân tích đa thức thành nhân tử theo 2 cách
a) 3a2c2 + bd + 3abc + acd
b) x3 - 2x2 - x + 2
1)
b) \(\left(x-z\right)^2-y^2+2y-1\)
\(=\left(x^2-2xz+z^2\right)-\left(y-1\right)^2\)
\(=\left(y-z\right)^2-\left(y-1\right)^2\)
\(=\left[\left(x-z\right)+\left(y-1\right)\right]\cdot\left[\left(x-z\right)-\left(y+1\right)\right]\)
\(=\left(x-z+y-1\right)\cdot\left(x-z-y-1\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Phân tích đa thức thành nhân tử - nhóm :
a) x^2 -6x - y^2 + 9.
b) 9 - x^2 + 2xy - y^2.
c) ax - ay + bx - by.
d) ax + a - bx - b + cx + c.
e) 3x^2 - 3y^2 - 2(x - y)^2.
f) 3a^2b^2 + bd + 3abc + acd.
g) x^3 - 2x^2 - x + 2.
h) 1 - 2a + 2bc + a^2 - b^2 - c^2.
a) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
b) \(9-x^2+2xy-y^2\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
c) \(ax-ay+bx-by\)
\(=a\left(x-y\right)+b\left(x-y\right)\)
\(=\left(x-y\right)\left(a+b\right)\)
phân tích đa thức thành nhân tử
a, x^3+2x^2-3x-6
b, 2a^2c^2-2abc+bd-acd
c, 5x^2(x-1)-10xy(x-1)-5y^2(1-x)
d, x^5-x^4y -xy^4+y^5
e, x^2-6xy+9y^2-9