Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Hồng Anh
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Thị Ngọc Quỳnh
Xem chi tiết
phạm minh tâm
22 tháng 1 2018 lúc 20:01

sử dụng bất đẳng thức đối với pt2 he 1

pt 2<=>\(xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=4\)

áp dụng bdt cô si ta dễ dàng chứng minh được VT>=4. dau = xay ra <=>x=y=1

Nguyễn Thị Ngọc Quỳnh
22 tháng 1 2018 lúc 20:22

nhưng x,y có không âm đâu mà được phép áp dụng cosi

phạm minh tâm
22 tháng 1 2018 lúc 20:34

khong su dung co si thi su dung bunhiacopxi

Trung Phan Bảo
Xem chi tiết
Phạm Hồ Thanh Quang
20 tháng 2 2019 lúc 17:08

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

Lê Phan Anh Thư
Xem chi tiết
alibaba nguyễn
8 tháng 6 2018 lúc 9:47

Ta có:

\(\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\)

\(\Leftrightarrow x^2y^2-2xy-1=0\)

Giải ra tìm được xy thế vô pt sau giải tiếp

Nguyễn Minh Sang
Xem chi tiết
Trần Hữu Ngọc Minh
31 tháng 12 2018 lúc 22:13

trừ cho nhau là xong

Phương Thảo
1 tháng 2 2019 lúc 16:36

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

Darlingg🥝
17 tháng 6 2019 lúc 17:46

Thật là trừ cho nhau không ạ bạn phải tìm x và y vì đây là một bài phương trình 

Thanh Tâm
Xem chi tiết
nguyen la nguyen
Xem chi tiết
Nguyễn Quỳnh Nga
16 tháng 1 2018 lúc 21:05

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

Nguyễn Quỳnh Nga
16 tháng 1 2018 lúc 20:58

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

Nguyễn Quỳnh Nga
16 tháng 1 2018 lúc 21:04

2) Từ hệ ta có \(\hept{\begin{cases}20x-6y=66\\-3x=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)

Phùng Gia Bảo
Xem chi tiết
Tran Le Khanh Linh
3 tháng 5 2020 lúc 8:14

\(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\left(1\right)\\4xy^3+y^2+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\left(2\right)\end{cases}}\)

\(VP\left(1\right)=\sqrt{\frac{1}{4}-\left(xy-\frac{1}{2}\right)^2}\le\frac{1}{2}\Rightarrow VT\left(1\right)=y^6+y^3+2x^2\le\frac{1}{2}\)

\(\Leftrightarrow2x^2+2y^3+4x^2\le1\left(3\right)\)

Từ (2)(3) => \(8xy^3+2y^3+2\ge2y^6+4x^2+4x^2+2\sqrt{1+\left(2x-y\right)^2}\)

\(\Leftrightarrow8xy^3+2\ge2y^6+8x^2+2\sqrt{2+\left(2x-y\right)^2}\)

\(\Leftrightarrow4xy^3+1\ge y^6+4x^2+\sqrt{1+\left(2x-y\right)^2}\)

\(\Leftrightarrow1-\sqrt{1+\left(2x-y\right)^2}\ge y^6-4xy^3+4x^2=\left(y^3-2x\right)^2\left(4\right)\)

\(VT\left(4\right)\le0;VP\left(4\right)\ge0\). Do đó:

(4) \(\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=2x\end{cases}\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=y\end{cases}}}\)<=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)

Thử lại chỉ có \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)thỏa mãn

Vậy hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)

Khách vãng lai đã xóa