Cho a/2003=b/2004=c/2005. Chứng minh rằng 4(a-b).(b-c)=(c-a)2
Cho a/2003=b/2004=c/2005. Chứng minh rằng 4(a-b)(b-c)=(a-c)^2
Cho a/2003=b/2004=c/2005
Chứng minh 4(a-b)(b-c)=(c-a)2
cho :
\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)
Chứng minh rằng : 4 . ( a - b ) . ( b - c ) = ( c - a )2
dat \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)
suy ra \(\hept{\begin{cases}a=2003k\\b=2004k\\c=2005k\end{cases}}\)
4.(a-b).(b-c)=4.(2003k-2004k).(2004k-2005k)=4k^2
(c-a)^2=(2005k-2003k)^2=4k^2
xong roi do cho minh dung nhe!
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)
\(\Rightarrow-\left(a-b\right)=-\left(b-c\right)=\frac{c-a}{2}\)
Thay vào \(4\left(a-b\right)\left(b-c\right)\), ta được :
\(4\left(a-b\right)\left(b-c\right)=4\left(-\frac{c-a}{2}\right)\left(-\frac{c-a}{2}\right)\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left[\frac{\left(c-a\right)^2}{4}\right]\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( điều phải chứng minh )
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}2003a=2004b=2005c=2003−2004a−b=2004−2005b−c=2005−2003c−a
\Rightarrow-\left(a-b\right)=-\left(b-c\right)=\frac{c-a}{2}⇒−(a−b)=−(b−c)=2c−a
Thay vào 4\left(a-b\right)\left(b-c\right)4(a−b)(b−c), ta được :
4\left(a-b\right)\left(b-c\right)=4\left(-\frac{c-a}{2}\right)\left(-\frac{c-a}{2}\right)4(a−b)(b−c)=4(−2c−a)(−2c−a)
\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left[\frac{\left(c-a\right)^2}{4}\right]⇒4(a−b)(b−c)=4[4(c−a)2]
\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2⇒4(a−b)(b−c)=(c−a)2( điều phải chứng minh )
Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\). Chứng minh rằng 4 .( a - b ) .( b - c ) = ( c - a )2
cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\) chứng minh rằng : \(4\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)
\(\Leftrightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Vậy ...
Cho \(\frac{a}{2003}\)=\(\frac{b}{2004}=\frac{c}{2005}\). Chứng minh rằng :\(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt: \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=b\Rightarrow\hept{\begin{cases}a=2003b\\b=2004b\\c=2005b\end{cases}}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003b-2004b\right)\left(2004b-2005b\right)=4.-b.-b=4b^2\)
\(\Rightarrow\left(c-a\right)^2=\left(2005b-2003b\right)^2=2k^2=4k^2\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
Đặt a/2003=b/2004=c/2005=k
Suy ra a=2003k, b=2004k, c=2005k (*)
Thay (*) vào 4(a-b)(b-c) ta được:
4(a-b)(b-c)=4(2003k-2004k) (2004k-2005k)
=4k(2003-2004).k(2004-2005)=4k2 .-1.-1
=4.k2 (1)
Thay (*) vào (c-a)2 ta được:
(c-a)2 =(2005k-2003k)2
= k2 (2005-2003)2
=k2 .4 (2)
Từ (1) và (2)
Suy ra ĐPCM
nha
1. Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\). Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
2. Cho \(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}\). Chứng minh rằng \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)
Chứng minh rằng: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Mình cũng học lớp 7 nhưng lần đầu mình thấy những loại toán này
coi \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\Rightarrow a=2003k;b=2004k;c=2005k\)
thay mấy cái trên vào 4(a-b)(b-c)và (c-a)2
Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)
Chứng minh rằng: 4(a-b)(b-c) = (c-a)2
Các bạn giúp mình nhé! Mình cảm ơn!
Đặt a/2003 = b/2004 = c/2005 = k
=> a=2003k
b=2004k
c=2005k
Thay các giá trị a,b,c trên vào 4(a-b)(b-c) = (c-a)2.Ta có:
4(a-b)(b-c)=4(2003k - 2004k)(2004k-2005k)=4.(-1k).(-1k)=4k2 (1)
(c-a)2 =(2005k-2003k)2=(2k)2= 4k2 (2)
Từ (1) và (2) suy ra 4(a-b)(b-c) = (c-a)2
(k) đúng cho mình nhé!
nhưng sao cách giải bài
này lai thế mình
có cách giải khác
mà tuy ko giống nhưng giống
kết qyar
Đặt a/2003 = b/2004 = c/2005 = k
=> a=2003k
b=2004k
c=2005k
Thay các giá trị a,b,c trên vào 4(a-b)(b-c) = (c-a)2.Ta có:
4(a-b)(b-c)=4(2003k - 2004k)(2004k-2005k)=4.(-1k).(-1k)=4k2 (1)
(c-a)2 =(2005k-2003k)2=(2k)2= 4k2 (2)
Từ (1) và (2) suy ra 4(a-b)(b-c) = (c-a)2