Tính:
\(\sqrt{9025}+\sqrt{4225}\)
\(\sqrt[3]{216}.\sqrt{9025}.\sqrt[3]{125}+\sqrt{625}=\)
\(\sqrt[3]{216}.\sqrt{9025}.\sqrt[3]{125}+\sqrt{625}.\)
\(=\sqrt[3]{6^3}.\sqrt{95^2}.\sqrt[3]{5^3}+\sqrt{25^2}\)
\(=6.95.5+25\)
\(=2850+25=2875\)
\(\sqrt[3]{216}.\sqrt{9025}.\sqrt[3]{125}+\sqrt{625}\)
\(=\sqrt[3]{6^3}.\sqrt{95^2}.\sqrt[3]{5^3}+\sqrt{25^2}\)
\(=6.95.5+25\)
\(=570.5+25\)
\(=2850+25=2875\)
Tính:
\(\sqrt{25}\) \(\sqrt{64}\) \(\sqrt{2025}\) \(\sqrt{81}\) \(\sqrt{4}\) \(\sqrt{9025}\)
Nhớ kết bạn nhé, câu trả lời hay sẽ được cộng hai điểm hỏi đáp nha !
\(\sqrt{25=5}\) \(\sqrt{64=8}\) \(\sqrt{2025=45}\) \(\sqrt{81=9}\) \(\sqrt{4=2}\) \(\sqrt{9025=95}\)
\(\sqrt{25}=5\) \(\sqrt{64}=8\) \(\sqrt{2025}=45\)
\(\sqrt{81}=9\) \(\sqrt{4}=2\) \(\sqrt{9025}=95\)
\(\sqrt{25=5}\) \(\sqrt{64=8}\)\(\sqrt{2025=45}\)\(\sqrt{81=9}\)\(\sqrt{4=2}\)\(\sqrt{9025=95}\)
Cho \(\sqrt{x}=65\)
Tính \(x^2\)
4225 274625 17850625 1160290625\(\sqrt{x}=65\Rightarrow x=65^2=4225\Rightarrow x^2=4225^2=17850625\)
tính nhanh
2+4+6+...+98+100
100-96+92-88+84-80+...+12-8-4
150-100+149-97+148-94+...+118-4
225-100-221-96+217-92+...+129-4+5
31+33+35+...+113+115
111-98+113-96+115-94+...+207-2
a: \(2+4+6+...+98+100\)
Số số hạng là; \(\dfrac{100-2}{2}+1=\dfrac{98}{2}+1=50\left(số\right)\)
Tổng của dãy số là: \(\left(100+2\right)\cdot\dfrac{50}{2}=51\cdot50=2550\)
b: Sửa đề: \(100-96+92-88+84-80+...+12-8+4\)
Trong dãy số 8;12;...;96;100 sẽ có:
\(\dfrac{100-8}{4}+1=\dfrac{92}{4}+1=24\left(số\right)\)
mà ta lại có 100-96=92-88=...=12-8=4
nên sẽ có 24 cặp số có tổng là 4 trong dãy số này
\(100-96+92-88+...+12-8+4\)
\(=\left(100-96\right)+\left(92-88\right)+\left(84-80\right)+...+\left(12-8\right)+4\)
\(=4+4+...+4\)
\(=4\cdot24+4=100\)
c: Đặt A=\(150-100+149-97+148-94+...+118-4\)
\(=\left(150+149+...+118\right)-\left(100+97+94+...+4\right)\)
Số số hạng trong dãy từ 118 đến 150 là:
(150-118):1+1=150-118+1=32+1=33(số)
Tổng của dãy số 118;119;...;150 là:
\(\left(150+118\right)\cdot\dfrac{33}{2}=4422\)
Số số hạng trong dãy 4;7;...;97;100 là:
\(\dfrac{100-4}{3}+1=\dfrac{96}{3}+1=33\left(số\right)\)
Tổng của dãy số 4;7;...;97;100 là:
\(\left(100+4\right)\cdot\dfrac{33}{2}=52\cdot33=1716\)
=>A=4422+1716=6138
e: \(31+33+35+...+113+115\)
Số số hạng là \(\dfrac{115-31}{2}+1=43\left(số\right)\)
Tổng của dãy số là: \(\left(115+31\right)\cdot\dfrac{43}{2}=3139\)
f: Đặt \(B=111-98+113-96+...+207-2\)
\(=\left(111+113+...+207\right)-\left(2+4+...+96+98\right)\)
Số số hạng trong dãy 111;113;...;207 là:
\(\dfrac{207-111}{2}+1=49\left(số\right)\)
=>Tổng của dãy này là: \(\left(207+111\right)\cdot\dfrac{49}{2}=7791\)
Số số hạng trong dãy 2;4;...;98 là:
\(\dfrac{98-2}{2}+1=\dfrac{96}{2}+1=49\left(số\right)\)
=>tổng của dãy này là: \(\left(98+2\right)\cdot\dfrac{49}{2}=49\cdot50=2450\)
=>B=7791-2450=5341
Tính:( Các bạn bấm máy tính nhé)
1.\(\left(\sqrt{10}-\sqrt{14}\right).\left(\sqrt{6+\sqrt{35}}\right)\)
2. \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2}+\sqrt{2}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
1: \(\left(\sqrt{10}-\sqrt{14}\right)\cdot\sqrt{6+\sqrt{35}}\)
\(=\left(\sqrt{5}-\sqrt{7}\right)\cdot\sqrt{12+2\sqrt{35}}\)
\(=\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)\)
=5-7=-2
2: Sửa đề: \(\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2^2-\left(2+\sqrt{2}\right)}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}=\sqrt{2}\)
\(B=-\sqrt{x}\left(\sqrt{x}-1\right)\)
Tính \(B\) biết \(x=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Tính kĩ giúp mk
đừng làm tắt ạ
\(x=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
=1
Thay x=1 vào B, ta được:
\(B=-\sqrt{1}\cdot\left(\sqrt{1}-1\right)=0\)
Tính:
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Sửa đề: \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Ta có: \(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)
=1
Tính
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt[]{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2^2-\left(2+\sqrt{2+\sqrt{3}}\right)^2}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}=\sqrt{4-3}=1\)
Tính: \(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{\sqrt{6}-\sqrt{2}}}.\sqrt{\sqrt{6}+\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}}{\sqrt{\sqrt{6}-\sqrt{2}}}.\sqrt{\sqrt{6}+\sqrt{2}}=\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{\sqrt{6}-\sqrt{2}}}.\sqrt{\sqrt{6}+\sqrt{2}}\)
\(=\sqrt{\sqrt{6}-\sqrt{2}}.\sqrt{\sqrt{6}+\sqrt{2}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}\)
\(=\sqrt{4}=2\)
Ta có: \(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{\sqrt{6}-\sqrt{2}}}\cdot\sqrt{\sqrt{6}+\sqrt{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{6}-\sqrt{2}\right)^2}{\sqrt{6}-\sqrt{2}}}\cdot\sqrt{\sqrt{6}+\sqrt{2}}\)
=4