1/2 +1/2^2+1/2^3+..........+1/2^99 <1
Chứng minh
1+1+1+1+2+2+2+2+3+3+3+3+...+99+99+99+99+100+100+100+100=?
=========================
==========================ko bt
( ;-; )
1+(1+2)+(1+2+3)+...+(1+2+3+4+...+99+100)/(1*100+2*99+...+99*2+100*1)*2013
Ta chia thành hai vế (1) và (2)
Số số hạng (1) là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng (1) là :
( 101 + 1 ) x 101 : 2 = 5151
Tự tính tiếp
\(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99+100\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+...+3\right)+...+\left(99+99\right)+100\)
\(=1.100+2.99+3.98+...+99.2+100.1\)
Do đó kết quả của phép tính cần tìm là:
\(\frac{1.100+2.99+...+99.2+100.1}{\left(1.100+2.99+...+99.2+100.1\right).2013}=\frac{1}{2013}\)
b=1/2+(1/2)^2+(1/3)^3+....++(1/2)^98+(1/2)^99+(1/2)^99
P=(1+2/1).(1+2/2)+(1+2/3)+....+(1+2/99)
Q=(-1-2-3-4...-99-100).(1/2+2/2^2+1/2^3+...1/2^10)
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
M = 1+ 1/2 . ( 1+2) + 1/3.(1+2+3)+....+ 1/99.(1+2+3+...+99)
\(M=1+\frac{1}{2.\left(1+2\right)}+\frac{1}{3.\left(1+2+3\right)}+...+\frac{1}{99.\left(1+2+3+...+99\right)}\)
\(M=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{4950}\)
\(M=1-\frac{1}{4950}\)
\(M=\frac{4949}{4950}\)
\(M=\frac{3}{2}-\frac{1}{4950}=\frac{7424}{4950}\)
a, Cho A= 1/99 + 2/98 + 3/47 + .......... + 98/2 + 99/1
B= 1/2 + 1/3 + 1/4 + ..........+ 1/99 + 1/100
Tính B/A
b, Cho A= 1/49 + 2/48 + 3/47 +.......+ 48/2 +49/1
B= 1 + 2/3 + 2/4 +......+ 2/49 + 2/50
Tính A/B
a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)
\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B
=>B/A=1/100
b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)
\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)
\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
=>A/B=25
tính nhanh (2/3+3/4+5/6+...+99/100).(1/2+2/3+3/4+...+98/99)-(1/2+1/3+...+99/100).(2/3+2/4+...+98/99)
(2+4+6+...+100) - (1+3+5+...+99) = ?
1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100 = ?
3 x 4 + 4 x 5 + 5 x 6 + ... + 149 x 150 = ?
1 + (1 + 2) + ( 1 + 2 + 3) + (1 + 2 + 3 + 4) + ....... + (1 + 2 + 3 + ... + 99)
----------------------------------------------------------------------------------------------------------- ( gạch ngang phân số )
1 x 99 + 2.98 + 3.97 + ...... + 99 x 1
So sánh :
M = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ....+ ( 1 + 2 + 3 + ......+ 99 )
N = 1. 99 + 2 . 98 + 3 . 97 + ....... + 99 . 1
M = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ....+ ( 1 + 2 + 3 + ......+ 99 )
M gồm 99 tổng, số 1 có mặt ở 99 tổng, số 2 có mặt ở 98 tổng,......., số 98 có mặt ở 2 tổng, số 99 có mặt ở 1 tổng
Vậy:
M = 1.99 + 2.98 + ...... + 98.2 + 99.1 = N
Vậy M = N
Ta có:
M=1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ....+ ( 1 + 2 + 3 + ......+ 99 )
=1+1+2+1+2+3+...+1+2+3+...+99
=(1+1+...+1+1)+(2+2+2+...+2)+...+(98+98)+99
-----99 số 1--; --98 số 2--------;...
=1.99+2.98+...+98.2+99.1
Mà N = 1. 99 + 2 . 98 + 3 . 97 + ....... + 99 . 1
=>M=N