Cho 4 điểm phân biệt A, B, C, D. Có bao nhiêu vectơ khác vectơ – không được lập ra từ 4 điểm đã cho?
A. 4
B. 6
C. 12
D. 8
Cho 4 điểm phân biệt A, B, C, D. Có bao nhiêu vectơ khác vectơ – không được lập ra từ 4 điểm đã cho?
A. 4
B. 6
C. 12
D. 8
Các vectơ khác vectơ – không được lập ra từ 4 điểm đã cho là:
A B → ; A C → ; A D → ; B A → ; B C → ; B D → ; C A → ; C B → ; C D → ; D A → ; D B → ; D C →
Đáp án C
Từ các điểm phân biệt A, B, C. Có bao nhiêu vectơ khác 0 được tạo ra? Hãy liệt kê các vectơ đó.
trong không gian cho 4 điểm A,B,C,D. Từ các điểm trên ta có thể lập được bao nhiêu vectơ khác vectơ không?
Trên mặt phẳng cho 6 điểm phân biệt A, B, C, D, E; F. Hỏi có bao nhiêu vectơ khác vectơ – không, mà có điểm đầu và điểm cuối là các điểm đã cho ?
A. 100.
B. 120.
C. 30.
D. 25.
Xét tập X = {A, B, C, D, E ; F}. Với mỗi cách chọn hai phần tử của tập X và sắp xếp theo một thứ tự ta được một vectơ thỏa mãn yêu cầu
Mỗi vectơ thỏa mãn yêu cầu tương ứng cho ta một chỉnh hợp chập 2 của 6 phần tử thuộc tập X.
Vậy số các vectơ thỏa mãn yêu cầu bằng số tất cả các chỉnh hợp chập 2 của 6, bằng
Chọn C.
cho 5 điểm phân biệt a,b,c,d,e.kể tên các vectơ khác vectơ không được tạo thành từ 5 điểm trên.
Lời giải:
$\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}, \overrightarrow{AE}$
$\overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{BD}, \overrightarrow{BE}$
$\overrightarrow{CA}, \overrightarrow{CB}, \overrightarrow{CD}, \overrightarrow{CE}$
$\overrightarrow{DA}, \overrightarrow{DB}, \overrightarrow{DC}, \overrightarrow{DE}$
$\overrightarrow{EA}, \overrightarrow{EB}, \overrightarrow{EC}, \overrightarrow{ED}$
Cho tứ giác ABCD. Có thể xác định được bao nhiêu vectơ ( khác \(\overrightarrow{0}\) ) có điểm đầu và điểm cuối là các điểm A, B, C, D
Hãy tính số các vectơ (khác \(\overrightarrow{0}\)) mà các điểm đầu và điểm cuối được lấy từ các điểm phân biệt đã cho trong các trường hợp sau :
a) Hai điểm
b) Ba điểm
c) Bốn điểm
a) Có hai véc tơ.
b)
Số đoạn thẳng tạo thành từ 3 điểm A, B, C là:\(\dfrac{3.2}{2}=3\) đoạn.
Mỗi đoạn thẳng tạo thành hai véc tơ đối nhau nên số véc tơ là:
\(3.2=6\) (véc tơ).
b) Số đoạn thẳng tạo thành từ 4 điểm phân biệt là:
\(4.3:2=6\) (đoạn).
Số véc tơ tạo thành là:
6.2 = 12 (véc tơ).
Cho 10 điểm phân biệt. Hỏi có thể tạo ra bao nhiêu vectơ có điểm đầu và điểm cuối không trùng nhau được lấy từ 10 điểm trên?
A.
B.
C. 20.
D.
Đáp án B.
Từ 2 điểm phân biệt có thể tạo được 2 vecto nên số vecto tạo ra được là
Cho 10 điểm phân biệt. Hỏi có thể tạo ra bao nhiêu vectơ có điểm đầu và điểm cuối không trùng nhau được lấy từ 10 điểm trên?
A. C 10 2 .
B. A 10 2 .
C. 20
D. 2 10
Đáp án B.
Từ 2 điểm phân biệt có thể tạo được 2 vecto nên số vecto tạo ra được là A 10 2 .