Hình bình hành ABCD có AD=2AB, CE⊥AB, M là trung điểm AD, ME⊥CE, ME cắt BC ở N.
a) tứ giác MNCD là hình gì?
b) tam giác EMC là tam giác gì?
c)chứng minh ∠BAD=2∠AEM
cho hình bình hành ABCD có AD=2AB. Từ C kể CE vuông góc với AD. Nối E với trung điểm M của AD. Từ M kẻ MF vuông góc với CE, MF cắt BC ở N
a) tứ giác MNCD là hình gì
b) Tam giác EMC là tam giác gì
c) Chứng minh rằng góc BAD=2 lần góc AEM
. Cho hình bình hành ABCD trong đó có AD = 2AB. Kẻ CE vuông góc với AB. Gọi M là trung điểm của AD, nối EM, kẻ MF vuông góc với CE; MF cắt BC tại N.
a. Tứ giác MNCD là hình gì ?
b. Tam giác EMC là tam giác gì ?
c. Chứng minh rằng: góc BAD = 2 góc AEM
. Cho hình bình hành ABCD trong đó có AD = 2AB. Kẻ CE vuông góc với AB. Gọi M là trung điểm của AD, nối EM, kẻ MF vuông góc với CE; MF cắt BC tại N.
a. Tứ giác MNCD là hình gì ?
b. Tam giác EMC là tam giác gì ?
c. Chứng minh rằng: góc BAD = 2 góc AEM
Cho hình bình hành ABCD có AD = 2AB, từ C vẽ CE vuông góc với AB, nối E với trung điểm M của AD. Từ M vẽ MF vuông góc với CE, MF cắt BC tại N.
a) Tứ giác MNCD là hình gì ? Vì sao ?
b) Tam giác EMC là tam giác gì ? Vì sao ? Chứng minh góc BAD = góc AEM
Ta có : MN\(\perp\)EC
AB\(\perp\)EC
=> AB // MN
Vì ABCD là hình bình hành
=> AD = BC
=> AB // CD
=> AB // CD // MN
Xét tứ giác AECD có :
M là trung điểm AD
MF // AE
=> F là trung điểm EC
Xét \(\Delta CEB\)có :
F là trung điểm EC
FN// EB
=> N là trung điểm BC
Ta có : AM = MD = \(\frac{AD}{2}\)
BN = NC = \(\frac{BC}{2}\)
=> MD = NC
Xét tứ giác MNCD có :
MN // DC
MD = NC
=>MNCD là hình bình hành
Vì F là trung điểm EC
=> EF = FC
Xét \(\Delta MEC\)có :
MF \(\perp\)EC
EF = FC
=> \(\Delta MEC\)cân tại M
hình bình hành ABCD có AD=2AB, từ C kẻ CE vuông góc vs AB. nối E với trung điểm M của AD. từ M kẻ MF vuông góc với CE, MF cắt BC tại N.
a, tứ giác MNCD là hình gj;
b, tam giác EMC là tam giác gì.
c.CM: góc BAD= 2 góc AEM
Cho hình bình hành ABCD trong đó có AD = 2AB. Kẻ CE vuông góc với AB. Gọi M là trung điểm của AD, nối EM, kẻ MF vuông góc với CE; MF cắt BC tại N.
a. Tứ giác MNCD là hình gì ?
b. Tam giác EMC là tam giác gì ?
c. Chứng minh rằng: góc BAD = 2 góc AEM.
Minh dang can gap, cam on nhieu
a, Ta có : CE vuông góc với AB
Mà CE đi qua MN và vuông góc với MN
=> AB//MN
Mà : AB//DC
=>MN//DC
Xét tứ giác MNCD có :
MN//DC (cmt)
MD//NC
=> MNCD là hình bình hành (có các cạnh đối bằng nhau)
b,Xét tam giác EBC có :
BN=NC ( MN//DC và AM=MD => MN là đtb của tứ giác ABCD => BN=NC)
Xin lỗi cho mình làm tiếp theo nha bạn .
Và : FN//EB (MN//AB)
=> FN là đtb của tam giác EBC
=> EF=FC
* Ta lại xét tam giác MEF và tam giác MFC có :
MF cạnh chung
F=90
EF=FC (cmt)
=> tg MEF=tg MFC (cgc)
=> ME=MC
=> tam giác MEC là tam giác cân
c, mk không biết
nhớ k nhé
Cho hình bình hành ABCD, AD= 2AB. Từ C vẽ CE vuông góc với AB. Nối E với trung điểm M của AD. Từ M vẽ MF vuông góc với CE, MF cắt BC tại N.
a) Tứ giác MNCD là hình j ?
b) EMC là tam giác gì?
c) Chứng minh : Góc BAD= 2AEM
Cho hình bình hành ABCD trong đó AD=2.AB. Từ C kẻ CE\(\perp\)AB. Nối E với trung điểm M của AD. Từ M kẻ MF\(\perp\)CE, MF cắt BC tại N.
a) Tứ giác MNCD là hình gì ?
b) Tam giác EMC là tam giác gì ?
c) Chứng minh góc BAD gấp đôi góc AEM.
Giải
a) Ta có CE AB, MF CE (gt)
Suy ra MF // AB // CD
Nên MNCD là hình bình hành
Lại có MD = AD = AB = CD
Vậy MNCD là hình thoi
b) Từ chứng minh trên ta có: CN = CD = BC; NF // BE
nên EF = FC
EMC có MF là đường cao vừa là đường trung tuyến nên là tam giác cân
Vậy EMC cân tại M
c) Ta có: góc BAD = góc NMD (đồng vị) (1)
mà góc NMD = góc M1 + góc M2 = 2 lần góc M3 (2)
và góc M3 = góc AEM (so le trong) (3)
Từ (1), (2), (3) suy ra: góc BAD = 2 lần góc AEM
ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE)
và MD//NC (AD//BC)
=> MNCD là hình bình hành (1)
MD=AD/2
MN=AB=AD/2
nên MD=MN (2)
từ (1)(2) => MNCD là hình thoi.
B) do MN//AB//CD(câu a)
và M là trung điểm AD
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC)
=> tam giác MEC cân tại M
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC
=> MF là đường phân giác của tam giác MEC
=> góc EMF=góc FMC
góc AEM=góc EMF(AB//MN)
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác)
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD
=> 2AEM=FMC+CMD
Hình bình hành ABCD có AD= 2AB. Vẽ CE vuông góc AB, M là trung điểm của AD, vẽ MF vuông góc CE (F thuộc CE) MF cắt BC tại N
a). ta giác EMC là tam giác gì?
b). Chứng minh góc BAD= 2 lần góc AEM
giúp mình với ạ
Bài 6: Cho hình bình hành ABCD có AD=2AB. Từ C kẻ CE vuông góc với AB tại E.
Nối E với trung điểm M của AD. Từ M kẻ MF vuông góc với CE, cắt BC tại N.
a) Tứ giác MNCD là hình gì? Vì sao?
b) Tam giác EMC là tam giác gì? Vì sao?
c) Chứng minh BAD ̂ = 2AEM̂.
a: Xét hình thang ADCB có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của CB
Xét tứ giác MNCD có
MD//CN
MD=CN
Do đó: MNCD là hình bình hành
mà DM=DC
nên MNCD là hình thoi