So sánh \(\sqrt{2019^2-1}-\sqrt{2018^2-1}\) và \(\frac{2.2018}{\sqrt{2019^2-1}+\sqrt{2018^2-1}}\)
so sánh \(\sqrt{2019^2-1}-\sqrt{2018^2-1}\)và \(\dfrac{2.2018}{\sqrt{2019^2-1}+\sqrt{2018^2-1}}\)
Tính \(C=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Ta có: \(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{k+1}}=\frac{\left(k+1\right)\sqrt{k}-k\sqrt{k+1}}{k\left(k+1\right)^2-k^2\left(k+1\right)}\)
\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k^3+2k^2+k-k^3-k^2}\)
\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k\left(k+1\right)}\)
\(=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Lần lượt thay k=1;2;...;2018 ta được:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{1}-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
...
\(\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}=\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)
Cộng vế theo vế ta được:
\(C=1-\frac{1}{\sqrt{2019}}=...\)
Rút gọn \(\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}+\frac{1-\sqrt{4}+\sqrt{5}}{1+\sqrt{4}+\sqrt{5}}+...+\frac{1-\sqrt{2018}+\sqrt{2019}}{1+\sqrt{2018}+\sqrt{2019}}\)
Rút gọn biểu thức S = \(\frac{2019}{2\sqrt{1}+1\sqrt{2}}+\frac{2019}{3\sqrt{2}+2\sqrt{3}}+\frac{2019}{4\sqrt{3}+3\sqrt{4}}+...+\frac{2019}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Mk chỉ cần kết quả thôi , cảm ơn nhiều ạ
\(A=\frac{1}{\sqrt{1.2018}}+\frac{1}{\sqrt{2.2017}}+....+\frac{1}{\sqrt{k.\left(2018-k+1\right)}}+....+\frac{1}{\sqrt{2018.1}}\)
So sánh \(A\) với \(2.\frac{2018}{2019}\)
\(\frac{1}{\sqrt{k\left(2018-k+1\right)}}>\frac{2}{k+2019-k}=\frac{2}{2019}\)
Ap dụng bài toan được
\(A>\frac{2}{2019}+\frac{2}{2019}+...+\frac{2}{2019}=2.\frac{2018}{2019}\)
Tính:
A= \(\frac{1}{2\sqrt{1}+1\sqrt{2}}\)+ \(\frac{1}{3\sqrt{2}+2\sqrt{3}}\)+....+ \(\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Với mọi \(n\inℕ^∗\) ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n-1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\)
Áp dụng đẳng thức trên ta có:
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)
\(=1-\frac{1}{\sqrt{2019}}\)
\(t\text{ổng}qu\text{át}:\frac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}=\frac{n\sqrt{n-1}-\left(n-1\right)\sqrt{n}}{n^2\left(n-1\right)-\left(n-1\right)^2n}\)
\(=\frac{n\sqrt{n-1}-\left(n-1\right)\sqrt{n}}{\left(n-1\right)n}\)
\(=\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\)
Thay vào A có
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)
\(=1-\frac{1}{\sqrt{2017}}\)
So sánh :
A=\(\sqrt{2019^2-1}-\sqrt{2018^2-1}\) và B=\(\dfrac{2.2019}{\sqrt{2019^2-1+\sqrt{2018^2-1}}}\)
rút gon biểu thức:
1, \(\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right)\)
2, \(\dfrac{1+2019\sqrt{2018}-2018\sqrt{2019}}{\sqrt{2018}+\sqrt{2019}+\sqrt{2018.2019}}\)
1)
DKCĐ: a>0,\(a\ne1\)
\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}}{a}-\dfrac{1}{a}\right)\)\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\right)\)\(=\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{1+a+1-a+2\sqrt{\left(1+a\right)\left(1-a\right)}}{\left(1+a\right)-\left(1-a\right)}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\)\(=\dfrac{2\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)}{2a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\sqrt{\left(1+a\right)\left(1-a\right)}+1}{a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)\left(\sqrt{\left(1+a\right)\left(1-a\right)}-1\right)}{a^2}\\ =\dfrac{\left(1+a\right)\left(1-a\right)-1}{a^2}\\ =\dfrac{1-a^2-1}{a^2}\\ =\dfrac{-a^2}{a^2}\\ =-1\)
Tính \(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)