tính tích của:
a,3mũ1*3mũ2*3mũ3*......*3mũ100
b,1mũ1*2mũ2*3mũ3*4mũ4*...*100mũ100
3mũ1-3mũ2+3mũ3-3mũ4+ . . . +3mũ9-3mũ10+3mũ11
Đặt \(D=3-3^2+3^3-3^4+...+3^9-3^{10}+3^{11}\)
=> \(3D=3^2-3^3+3^4-3^5+...+3^{10}-3^{11}+3^{12}\)
Cộng vế 2 BT trên ta được:
\(D+3D=\left(3-3^2+...+3^{11}\right)+\left(3^2-3^3+...+3^{12}\right)\)
\(\Leftrightarrow4D=3^{12}+3\)
\(\Rightarrow D=\frac{3^{12}+3}{4}\)
3mũ6 chia 3mũ2 cộng 2mũ3 nhân 2mũ2 trừ 3mũ3 nhân 3
\(3^6:3^2+2^3.2^2-3^3.3\)
\(=3^4+2^5-3^4\)
\(=3^4-3^4+2^5\)
\(=0+2^5=2^5\)
\(3^6:3^2+2^3.2^2-3^3.3\\ =3^4+2-3^4\\ =\left(3^4-3^4\right)+2\\ =0+2\\ =2.\)
Sửa hộ mk thành \(2^5\) bắt đầu từ dòng thứ 2 nhé.
s4=3+3mũ2+3mũ3+...+3mũ20
s5+1+2+2mũ2+2mũ3+...+2mũ99
a) 2mũ1 nhân 5mũ2 nhân 17
b) 2mũ2 + 2mũ3 + 2mũ4
c) 2mũ5 nhân 3 + 2mũ4 : 8 + 50 : 5mũ2
d) 11mũ2 - 10mũ2 - 3mũ2
e) 1mũ3 + 2mũ3 + 3mũ3 + 4mũ3 + 5mũ3
a, 21.52.17 = 2.25.17 = 50.17 = 850
b, 22 + 23 + 24 = 4 + 8 + 16 = 28
c, 25.3 + 24:8 + 50: 52
= 32.3 + 16:8 + 50:25
=96 + 2 + 2
= 100
d, 112 - 102 - 32
= 121 - 100 - 9
= 21 - 9
= 12
e, 13 + 23 + 33 + 43 + 53
= ( 1+ 2+3+4+5)2
= 152
= 225
cho A =1+3mũ1+3mũ2+3mũ3+..+3mũ2017
a,thu gọn A
b,tìm dư khi chia A cho 13
c,tìm chữ số tận cùng của A
tính tổng G= 1-3+3mũ2-3mũ3+3mũ4-...-3mũ99+3mũ100
G=1-3+32-33+34-...-399+3100
3G=3-32+33-34+35-....-3100+3101
3G+G=(3-32+33-34+35-....-3100+3101)+(1-3+32-33+34-...-399+3100)
4G = 3101+1
G=\(\frac{3^{101}+1}{4}\)
S=3+3mũ2+3mũ3+....+3mũ2022
\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2023}\)
trừ vế với vế ta được :
\(3S-S=3^{2023}-3\)
\(\Rightarrow2S=3^{2023}-3\)
\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)
3 mũ 1+3mũ2+3mũ3+3mũ4+...3mũ199
\(A=3^1+3^2+3^3+3^4+...+3^{199}\)
\(3A=3^2+3^3+3^4+3^5+...+3^{200}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{200}\right)-\left(3^1+3^2+3^3+...+3^{199}\right)\)
\(2A=3^{200}-3^1\)
\(A=\frac{3^{200}-3}{2}\)
=))
Đặt \(A=3^1+3^2+3^3+...+3^{199}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{200}\)
Lấy 3A trừ A theo vế ta có :
\(3A-A=\left(3^2+3^3+3^4+..+3^{200}\right)-\left(3^1+3^2+3^3+..+3^{199}\right)\)
\(2A=3^{200}-1\)
\(A=\frac{3^{200}-1}{2}\)
Vậy \(3^1+3^2+3^3+..+3^{199}=\frac{3^{200}-1}{2}\)
xích ma 3x chạy từ 1 tới 199 kết quả là \(^{\text{1,328069944 nhân}10^{95}}\)
S=3+3mũ2+3mũ3+....+3mũ2022
S=3+3^2+3^3+...+3^2022
3S=3.(3+3^2+3^3+...+3^2022)
3S=3^2+3^3+3^4+...+3^2023
⇒3S-S=(3^2+3^3+3^4+...+3^2023)-(3+3^2+3^3+...+3^2022)
⇒2S=3^2023-3
⇒S=3^2023-3 / 2
S=3+3^2+3^3+...+3^2022
=>3S=3^2+3^3+3^4+...+3^2023
=>3S-S=(3^2+3^3+3^4+...+3^2023)-(3+3^2+3^3+...+3^2022)
=>2S=3^2023-3
=>S=\(\dfrac{3^{2023}-3}{2}\)
Vậy S=\(\dfrac{3^{2023}-3}{2}\)