Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tth_new
Xem chi tiết
Nguyệt
3 tháng 10 2018 lúc 18:24

\(ab=ca=>\frac{c}{b}=\frac{b}{a}\)

\(dat\frac{c}{b}=\frac{b}{a}=k=>c=bk,b=ak,a=\frac{b}{k}\)

\(mafc+a+b=91=>bk+ak+\frac{b}{k}=91\)

\(=>k.\left(b+a+\frac{b}{k^2}\right)=91\)

k,(b+a+b/k^2) thuộc U(91)={7,-7,13,-13}

vì a,b,c là số nguyên dương=>k,(b+a+b/k^2) ={7,13}

thay vào rồi tính

.....sai thì cứ sai đừng chửi nha 

Vanlacongchua
3 tháng 10 2018 lúc 18:38

Đặt \(b=ka\) và \(c=k^2a\) \(\left(k>1\right)\)thì ra được \(a\left(1+k+k^2\right)\)\(=91\)

Phân tích 91 ra thừa số nguyên tố ta có      \(91=7.13\)

Xét Trường Hợp 1 : Nếu k là số tự nhiên thì ta được

\(\hept{\begin{cases}a=1\\1+k+k^2=91\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\k=9\end{cases}\Rightarrow}a=1;b=9;c=81}\)

\(\hept{\begin{cases}a=7\\1+k+k^2=13\end{cases}\Leftrightarrow\hept{\begin{cases}a=7\\k=3\end{cases}\Rightarrow}a=7;b=21;c=63}\)

\(\hept{\begin{cases}a=13\\1+k+k^2=7\end{cases}\Leftrightarrow\hept{\begin{cases}a=13\\k=2\end{cases}\Rightarrow}a=13;b=26;c=52}\)

Xét Trường Hợp 2

Nếu k là số hữu tỉ thì giả sử : \(k=\frac{x}{y}\) (\(x\ge3;y\ge2\))

Khi đó : \(a\left(1+k+k^2\right)=91\Leftrightarrow a\left(x^2+xy+y^2\right)\) \(=91y^2\left(x^2+xy+y^2\ge19\right)\)

Ta có : \(c=\frac{ax^2}{y^2}\in Z\Rightarrow\frac{a}{y^2}\in Z\Rightarrow a=ty^2\Rightarrow x^2+xy+y^2=91\Rightarrow x=6;y=5\)

và \(a=25;b=30;c=36\)

Vậy có 8 trường hợp thỏa mãn điều kiện trên : \(\left(1;9;81\right);\left(81;9;1\right);\left(7;21;63\right);\left(63;21;7\right);\left(13;26;52\right);\left(52;26;13\right);\left(25;30;36\right);\left(36;30;25\right)\)

 .
Xem chi tiết
Trần Thùy Dương
29 tháng 9 2018 lúc 12:33

Vì  \(b^2=ca\)

\(\Rightarrow c.a=b.b\)

\(\Rightarrow c=a=b\)

\(\Rightarrow c+a+b=3b\)

\(\Rightarrow a+b+c=91\)

+)  \(3.b=91\)

\(\Rightarrow b=27\)

Vì \(a=b=c\)

Mà \(b=27\)

\(\Rightarrow a=b=c=27\)

Trí Tiên亗
30 tháng 9 2018 lúc 21:28

Đặt  thì ta được

Trường hợp 1: Nếu  là số tự nhiên thì ta được

 

Trường hợp 2: Nếu  là số hữu tỷ thì giả sử  

Khi đó

Ta có

Vậy có 8 bộ số  thỏa mãn

Nguyễn Hà Trang
7 tháng 10 2018 lúc 9:31

Trần Hương Giang sai 91 không chia hết cho 3

Trần Nam Khánh
Xem chi tiết
dia fic
Xem chi tiết
Nguyễn Hà Trang
Xem chi tiết
Anh Lê Đức
Xem chi tiết
thần giao cách cảm
19 tháng 9 2016 lúc 23:23

thtfgfgfghggggggggggggggggggggg

Hoàng Tiến ĐônG
Xem chi tiết
Dam Duyen Le
Xem chi tiết
Bảo Thân Gia
Xem chi tiết