Tìm các số nguyên dương a,b,c thỏa mãn a+b+c=91 và b^2=ca
Tìm các số nguyên dương a, b, c thỏa mãn: a + b + c = 91 và b2 = ca
\(ab=ca=>\frac{c}{b}=\frac{b}{a}\)
\(dat\frac{c}{b}=\frac{b}{a}=k=>c=bk,b=ak,a=\frac{b}{k}\)
\(mafc+a+b=91=>bk+ak+\frac{b}{k}=91\)
\(=>k.\left(b+a+\frac{b}{k^2}\right)=91\)
k,(b+a+b/k^2) thuộc U(91)={7,-7,13,-13}
vì a,b,c là số nguyên dương=>k,(b+a+b/k^2) ={7,13}
thay vào rồi tính
.....sai thì cứ sai đừng chửi nha
Đặt \(b=ka\) và \(c=k^2a\) \(\left(k>1\right)\)thì ra được \(a\left(1+k+k^2\right)\)\(=91\)
Phân tích 91 ra thừa số nguyên tố ta có \(91=7.13\)
Xét Trường Hợp 1 : Nếu k là số tự nhiên thì ta được
\(\hept{\begin{cases}a=1\\1+k+k^2=91\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\k=9\end{cases}\Rightarrow}a=1;b=9;c=81}\)
\(\hept{\begin{cases}a=7\\1+k+k^2=13\end{cases}\Leftrightarrow\hept{\begin{cases}a=7\\k=3\end{cases}\Rightarrow}a=7;b=21;c=63}\)
\(\hept{\begin{cases}a=13\\1+k+k^2=7\end{cases}\Leftrightarrow\hept{\begin{cases}a=13\\k=2\end{cases}\Rightarrow}a=13;b=26;c=52}\)
Xét Trường Hợp 2
Nếu k là số hữu tỉ thì giả sử : \(k=\frac{x}{y}\) (\(x\ge3;y\ge2\))
Khi đó : \(a\left(1+k+k^2\right)=91\Leftrightarrow a\left(x^2+xy+y^2\right)\) \(=91y^2\left(x^2+xy+y^2\ge19\right)\)
Ta có : \(c=\frac{ax^2}{y^2}\in Z\Rightarrow\frac{a}{y^2}\in Z\Rightarrow a=ty^2\Rightarrow x^2+xy+y^2=91\Rightarrow x=6;y=5\)
và \(a=25;b=30;c=36\)
Vậy có 8 trường hợp thỏa mãn điều kiện trên : \(\left(1;9;81\right);\left(81;9;1\right);\left(7;21;63\right);\left(63;21;7\right);\left(13;26;52\right);\left(52;26;13\right);\left(25;30;36\right);\left(36;30;25\right)\)
Tìm các số nguyên dương a, b, c thỏa mãn a + b + c = 91 và b^2 = c.a
Vì \(b^2=ca\)
\(\Rightarrow c.a=b.b\)
\(\Rightarrow c=a=b\)
\(\Rightarrow c+a+b=3b\)
\(\Rightarrow a+b+c=91\)
+) \(3.b=91\)
\(\Rightarrow b=27\)
Vì \(a=b=c\)
Mà \(b=27\)
\(\Rightarrow a=b=c=27\)
Đặt thì ta được |
Trường hợp 1: Nếu là số tự nhiên thì ta được
|
Trường hợp 2: Nếu là số hữu tỷ thì giả sử Khi đó |
Ta có và Vậy có 8 bộ số thỏa mãn |
Trần Hương Giang sai 91 không chia hết cho 3
giúp mình với;tìm các số nguyên dương a,b,c thỏa mãn a+b+c=91 và b bình phương =ca
p/s:ko cần đáp số,chỉ cần hướng giải thôi
CẦN GẤP LẮM!!!
cho a, b, c là các số nguyên dương thỏa mãn \(ab+bc+ca+2\left(a+b+c\right)=8045\) và \(abc-a-b-c=-2\). tìm a+b+c
tìm các số nguyên dương a,b,c thỏa mãn a + b + c =91 và b3 = c . a
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
cho các số nguyên dương a , b , c thỏa mãn a/b=2b/c=4c/a . Rút gọn phân số sau T=ab+bc+ca/a^2+b^2+c^2
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a2 - b, b2 - c, c2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n2- 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a2 + 3b; b2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a2 + b2 + c2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
6. Cho các số nguyên (a -b)2 = a + 8b -16. CMR a là số chính phương.
7. Tìm các số tự nhiên m, n thỏa mãn 4m - 2m+1 = n2 + n + 6
cho a,b,c,x,y,z là các số nguyên dương và ba số a,b,c khác 1 thỏa mãn a^x=bc,b^y=ca,c^z=ab.Chứng minh rằng x+y+z+2=xyz