Cho hình bình hành ABCD có góc A =α và BD ⊥ BC , AB= a. Tính diện tích ABCD theo a và α
Cho hình bình hành ABCD có BD vuông góc với BC. Biết AB=a, góc A = α . Tính diện tích hình bình hành ABCD theo a và α
Cho hình bình hành ABCD có góc A =α và BD ⊥ BC , AB= a. Tính diện tích ABCD theo a và α
Hình bình hành ABCD . BD vuông góc với Bc. AB=a, góc A là góc anpha. Tính diện tích hình bình hành ABCD theo a và anpha
Cho hình thang ABCD có AB//CD có góc nhọn BCD = α ; BC = m ; CD = n
a) Tính diện tích , chu vi và các đường chéo của hình thang ABCD theo m ; n và góc alpha
b) Tính diện tích , chu vi và các đường chéo của hình thang ABCD biết m = 4,25 cm ; n = 7,56 cm ; α=54∘30′
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α , với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng S B C .
A. sin α = 7 8
B. sin α = 3 2
C. sin α = 2 4
D. sin α = 3 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a , BC = a 3 , SA = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi đường thẳng BD và mặt phẳng (SBC)
#SGD Bắc Giang – năm 2017 – 2018~Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, AB=a, BC = a 3 , SA=a và SA vuông góc với đáy ABCD. Tính sin α, với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC).
Đặt hệ trục tọa độ Oxyz như hình vẽ.
Khi đó, ta có A (0;0;0), B (a;0;0), D (0; a√3 ; 0), S (0;0;a).
Ta có , nên đường thẳng BD có vectơ chỉ phương là .
Như vậy, mặt phẳng (SBC) có vectơ pháp tuyến là
Do đó, α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC) thì
Cho hình chóp S. ABCD có đáy là hình bình hành tâm O có AC= a và BD= b. Tam giác SBD là tam giác đều. Một mặt phẳng (α) di động song song với mặt phẳng (SBD) và đi qua điểm I trên đoạn OA và AI = x ( 0< x< a) . Xác định thiết diện của hình chóp cắt bởi mặt phẳng (α) và tính dienj tích thiết diện theo a; b và x?
A. b 2 x 2 2 a 2
B. b 2 x 2 3 2 a 2
C. b 2 x 2 3 a 2
D. Đáp án khác
Cho hình chóp S. ABCD có đáy là ABCD là hình chữ nhật có AB = a, BC= 2a. Hai mp (SAB)và mp (SAD) cùng vuông góc với mặt phẳng đáy, cạnh SC hợp với mặt đáy một góc α . Tính thể tích khối chóp S. ABCD theo α
A. 2 a 3 15 3
B. 2 a 3 15
C. 2 a 3
D. 2 a 3 15 9