Tìm điều kiện để căn thức sau có nghĩa;
\(\sqrt{4x^2+3}\)
tìm điều kiện để căn thức sau có nghĩa
a)√25x
tìm điều kiện của x để căn thức sau có nghĩa
căn 2020 + căn -3 phần x+3
\(\sqrt{2020}+\sqrt{-\frac{3}{x+3}}\)
Căn thức trên có nghĩa khi:\(\hept{\begin{cases}x+3\ne0\\-\frac{3}{x+3}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x< -3\end{cases}}}}\)
\(\Rightarrow x< -3\)
tìm điều kiện xác định để biểu thức sau có nghĩa căn của cả x+3/7-x
\(\sqrt{x+\frac{3}{7-x}}hay\sqrt{x+\frac{3}{7}-x}\) vậy?
Để \(\sqrt{\frac{x+3}{7-x}}\)có nghĩa thì x + 3 và 7 - x cùng dấu
\(TH1:\hept{\begin{cases}x+3\ge0\\7-x>0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x< 7\end{cases}}\Rightarrow-3\le x< 7\)(Vì x = 7 thì bt không có nghĩa)
\(TH2:\hept{\begin{cases}x+3\le0\\7-x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-3\\x>7\end{cases}}\left(L\right)\)
Vậy \(-3\le x< 7\)
Tìm điều kiện để căn thức sau có nghĩa
\(\sqrt{-x^2-1}\)
Tìm điều kiện của x để căn thức 1 x - 1 có nghĩa.
A. x ≥ 1
B. x < 1
C. x > 1
D. x = 1
Tìm điều kiện để căn thức sau có nghĩa: \(\sqrt{x^2-8x-9}\)
Để căn thức \(\sqrt{x^2-8x-9}\) có nghĩa
<=> x2 - 8x - 9 \(\ge0\)
<=> (x - 4)2 \(\ge25\)
<=> |x - 4| \(\ge5\)
<=> \(\orbr{\begin{cases}x-4\ge5\\x-4\le-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge9\\x\le-1\end{cases}}\)
Tìm điều kiện để căn thức sau có nghĩa: \(\sqrt{\frac{2x-4}{5-x}}\)
\(\sqrt{\frac{2x-4}{5-x}}\ge0\)
\(< =>\frac{2x-4}{5-x}\ge0;5-x\ne0\)
\(x\ne5\)
\(\frac{2x-4}{5-x}\ge0\)
\(TH1:2x-4\ge0;5-x\ge0\)
\(\hept{\begin{cases}x\ge2\\x\le5\end{cases}< =>2\le x\le}5\)
\(TH2:2x-4< 0;5-x< 0\)
\(\hept{\begin{cases}x< 2\\x>5\end{cases}}\)pt vô no
vậy ddeeer căn thức đc xác định thì\(2\le x\le5\)
ĐKXĐ : x \(\ne5\)
Để \(\sqrt{\frac{2x-4}{5-x}}\text{ có nghĩa }\Rightarrow\frac{2x-4}{5-x}\ge0\)
TH1 : \(\hept{\begin{cases}2x-4\ge0\\5-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x< 5\end{cases}}\Leftrightarrow2\le x< 5\)
TH2 : \(\hept{\begin{cases}2x-4\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x>5\end{cases}}\Leftrightarrow x\in\varnothing\)
Để căn thức \(\sqrt{\frac{2x-4}{5-x}}\)thì \(2\le x< 5\)
a) Tìm điều kiện để các căn thức sau có nghĩa: căn x-10 b) đưa thừa số ra ngoài dấu căn: a cân9²b(a>_0) c) so sánh: 2căn3+1 và 2căn2+căn5
a: ĐKXĐ: x-10>=0
=>x>=10
b: \(\sqrt{9a^2b}=\sqrt{\left(3a\right)^2\cdot b}=3a\cdot\sqrt{b}\)
c: \(\left(2\sqrt{3}+1\right)^2=13+4\sqrt{3}\)
\(\left(2\sqrt{2}+\sqrt{5}\right)^2=8+5+2\cdot2\sqrt{2}\cdot\sqrt{5}=13+4\sqrt{10}\)
mà \(4\sqrt{3}< 4\sqrt{10}\left(3< 10\right)\)
nên \(\left(2\sqrt{3}+1\right)^2< \left(2\sqrt{2}+\sqrt{5}\right)^2\)
=>\(2\sqrt{3}+1< 2\sqrt{2}+\sqrt{5}\)
Tìm điều kiện của x để mỗi căn thức sau có nghĩa
9, Để căn thức trên có nghĩa khi \(1-x^2\ge0\Leftrightarrow-1\le x\le1\)
10, Để căn thức trên có nghĩa khi \(\hept{\begin{cases}\frac{x-2}{x+3}\ge0\\x+3\ne0\end{cases}}\Leftrightarrow x< -3;x\ge2\)
Tìm điều kiện của x để căn thức sau có nghĩa:
\(\sqrt{2\left|x\right|-1}\)
ĐKXĐ của \(\sqrt{2\left|x\right|-1}\) là \(2\left|x\right|-1\ge0\)
\(\Leftrightarrow2\left|x\right|\ge1\)
\(\Leftrightarrow\left|x\right|\ge\frac{1}{2}\)
\(\Rightarrow\orbr{\begin{cases}x\ge\frac{1}{2}\\x\le-\frac{1}{2}\end{cases}}\)