Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Nguyễn thanh
Xem chi tiết
Rin•Jinツ
24 tháng 11 2021 lúc 8:11

\(\sqrt{25x}\ge0\)

\(25x\ge0\)

\(x\ge0\)

༒ღTrọnggღ༒
24 tháng 11 2021 lúc 8:13

√25x≥025x≥0

25x≥025x≥0

x≥0

Jennie Kim
Xem chi tiết
Anime Tổng Hợp
19 tháng 2 2020 lúc 15:37

\(\sqrt{2020}+\sqrt{-\frac{3}{x+3}}\)

Căn thức trên có nghĩa khi:\(\hept{\begin{cases}x+3\ne0\\-\frac{3}{x+3}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x< -3\end{cases}}}}\)

\(\Rightarrow x< -3\)

Khách vãng lai đã xóa
Hue Trieu
Xem chi tiết
Le Hong Phuc
27 tháng 5 2018 lúc 8:51

\(\sqrt{x+\frac{3}{7-x}}hay\sqrt{x+\frac{3}{7}-x}\) vậy?

Kiệt Nguyễn
28 tháng 11 2019 lúc 21:37

Để \(\sqrt{\frac{x+3}{7-x}}\)có nghĩa thì x + 3 và 7 - x cùng dấu

\(TH1:\hept{\begin{cases}x+3\ge0\\7-x>0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x< 7\end{cases}}\Rightarrow-3\le x< 7\)(Vì x = 7 thì bt không có nghĩa)

\(TH2:\hept{\begin{cases}x+3\le0\\7-x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-3\\x>7\end{cases}}\left(L\right)\)

Vậy \(-3\le x< 7\)

Khách vãng lai đã xóa
♥Ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 12 2017 lúc 16:33

33. Nguyễn Minh Ngọc
Xem chi tiết
Xyz OLM
4 tháng 7 2021 lúc 16:51

Để căn thức \(\sqrt{x^2-8x-9}\) có nghĩa 

<=> x2 - 8x - 9 \(\ge0\)

<=> (x - 4)2 \(\ge25\)

<=> |x - 4| \(\ge5\)

<=> \(\orbr{\begin{cases}x-4\ge5\\x-4\le-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge9\\x\le-1\end{cases}}\)

Khách vãng lai đã xóa
33. Nguyễn Minh Ngọc
Xem chi tiết
Hoàng Như Quỳnh
4 tháng 7 2021 lúc 16:28

\(\sqrt{\frac{2x-4}{5-x}}\ge0\)

\(< =>\frac{2x-4}{5-x}\ge0;5-x\ne0\)

\(x\ne5\)

\(\frac{2x-4}{5-x}\ge0\)

\(TH1:2x-4\ge0;5-x\ge0\)

\(\hept{\begin{cases}x\ge2\\x\le5\end{cases}< =>2\le x\le}5\)

\(TH2:2x-4< 0;5-x< 0\)

\(\hept{\begin{cases}x< 2\\x>5\end{cases}}\)pt vô no

vậy ddeeer căn thức đc xác định thì\(2\le x\le5\)

Khách vãng lai đã xóa
Xyz OLM
4 tháng 7 2021 lúc 16:29

ĐKXĐ : x \(\ne5\)

Để \(\sqrt{\frac{2x-4}{5-x}}\text{ có nghĩa }\Rightarrow\frac{2x-4}{5-x}\ge0\)

TH1 : \(\hept{\begin{cases}2x-4\ge0\\5-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x< 5\end{cases}}\Leftrightarrow2\le x< 5\)

TH2 : \(\hept{\begin{cases}2x-4\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x>5\end{cases}}\Leftrightarrow x\in\varnothing\)

Để căn thức \(\sqrt{\frac{2x-4}{5-x}}\)thì \(2\le x< 5\)

Khách vãng lai đã xóa
Vyyyyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 22:26

a: ĐKXĐ: x-10>=0

=>x>=10

b: \(\sqrt{9a^2b}=\sqrt{\left(3a\right)^2\cdot b}=3a\cdot\sqrt{b}\)

c: \(\left(2\sqrt{3}+1\right)^2=13+4\sqrt{3}\)

\(\left(2\sqrt{2}+\sqrt{5}\right)^2=8+5+2\cdot2\sqrt{2}\cdot\sqrt{5}=13+4\sqrt{10}\)

mà \(4\sqrt{3}< 4\sqrt{10}\left(3< 10\right)\)

nên \(\left(2\sqrt{3}+1\right)^2< \left(2\sqrt{2}+\sqrt{5}\right)^2\)

=>\(2\sqrt{3}+1< 2\sqrt{2}+\sqrt{5}\)

Nakamori Keiko
Xem chi tiết
Nguyễn Huy Tú
30 tháng 7 2021 lúc 15:26

9, Để căn thức trên có nghĩa khi \(1-x^2\ge0\Leftrightarrow-1\le x\le1\)

10, Để căn thức trên có nghĩa khi \(\hept{\begin{cases}\frac{x-2}{x+3}\ge0\\x+3\ne0\end{cases}}\Leftrightarrow x< -3;x\ge2\)

Khách vãng lai đã xóa
Đinh Ngọc Duy Uyên
Xem chi tiết
Đinh Đức Hùng
19 tháng 6 2017 lúc 9:02

ĐKXĐ của \(\sqrt{2\left|x\right|-1}\) là \(2\left|x\right|-1\ge0\)

\(\Leftrightarrow2\left|x\right|\ge1\)

\(\Leftrightarrow\left|x\right|\ge\frac{1}{2}\)

\(\Rightarrow\orbr{\begin{cases}x\ge\frac{1}{2}\\x\le-\frac{1}{2}\end{cases}}\)