Tìm các số tự nhiên a, b thoả mãn đẳng thức: 3a + 9b = 183
3a + 9b = 183. Tìm số tự nhiên a; b
=> 3a+9b=183
=> 3( a+ 3b)= 183
=> a+3b= 61
a lớn nhất<=> a=9
=> 3b nhỏ nhất <=> 3b= 52=> b nhỏ nhất= 17( thuoc n)
vậy a=7; b= 18
Cho các số tự nhiên a,b thoả mãn 2a + 9b chia hết cho 11. Chứng minh rằng (a + 10b)(2a + 96)(3a + 8b)....(10a + 6) chia hết cho 11^10
tìm các số tựn nhiên a và b thỏa mãn các đẳng thức sau:
a) 3a + 9b = 183
b) 5a + 323 = b2
c) 2a + 342= 7b
d) 2a + 80 = 3b
a)do 183 chia hết cho 3 nhưng ko chia hết cho 9
mà 9b chia hết cho 9
=>3a=3=>a=1
9b=180=>b=20
a=1,b=20
tìm stn n nhỏ nhất thoả mãn n=3a^3=4b^4 với a,b thuộc các số tự nhiên khác 0
3a+9b=183. Tìm các số tự nhiên a, b
ko hiểu gì , what
bạn ra đề rõ hơn được ko
Có bao nhiêu số tự nhiên b thoả mãn đẳng thức:
a^2 - 9ab + b^3 + b^2 = 0
\(a^2-9ab+b^2\)
Có 2 số tự nhiên b thỏa mãn hằng đẳng thức
Tìm các số tự nhiên a, b biết: 3a+9b=183
Cho 1 tick nếu giải được bài này: tìm các số tự nhiên a và b biet 3^a+9b=183
Tìm các số tự nhiên a, b biết rằng:
a) 2a + 124 = 5b
b) 3a + 9b = 183
c) 2a + 80 = 3b
a.
Với \(a=0\Rightarrow1+124=5^b\Rightarrow b=3\)
Với \(a>0\Rightarrow2^a\) luôn chẵn \(\Rightarrow2^a+124\) luôn chẵn
Mà \(5^b\) luôn lẻ \(\Rightarrow\) không tồn tại \(a>0\) thỏa mãn
Vậy \(\left(a;b\right)=\left(0;3\right)\)
b.
\(3^a\) và \(9^b\) đều luôn lẻ \(\Rightarrow3^a+9^b\) luôn chẵn
Mà 183 lẻ \(\Rightarrow\) không tồn tại a; b thỏa mãn
c.
\(a=0\Rightarrow1+80=3^b\Rightarrow b=4\)
Với \(a>0\Rightarrow2^a\) chẵn \(\Rightarrow2^a+80\) chẵn
Mà \(3^b\) luôn lẻ \(\Rightarrow\) ko tồn tại \(a>0\) thỏa mãn
Vậy \(\left(a;b\right)=\left(0;4\right)\)