Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Trần
Xem chi tiết
missing you =
17 tháng 9 2021 lúc 21:14

\(\Rightarrow U=IR=24.0,5=12V\)

vay phai dat vao 2 dau bong den 1 HDT=12V

Trang Trần
Xem chi tiết
Lê Đặng Thùy Dương
Xem chi tiết
Lê Trần Nguyên Khải
26 tháng 5 2022 lúc 21:13

Xét tam giác NAB cân tại N, có M là trung điểm của AB suy ra NM vuông góc với AB (1)

Xét tam giác APB cân tại P, có M là trung điểm của AB suy ra MP vuông góc với AB (2)

Từ (1,2) suy ra M, N, P thẳng hàng

Muốn giải đáp các thắc mắc tới toán , vật lý vui lòng chat trức tiếp

Văn Hoàng Anh
Xem chi tiết
Dark Killer
23 tháng 6 2016 lúc 15:27

Mình biết làm 1 cách thui, mong bạn thông cảm nha!

\(x^2-6x+8=0\Leftrightarrow x^2-2x-4x+8=0\)

\(\Leftrightarrow x\left(x-2\right)-4\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-2=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=4\end{cases}}}\)

Chúc may mắn nha!

Hoàng Ngọc Trâm
Xem chi tiết

Các số được điền vào các ô theo thứ tự từ trái sang phải là:

-1; - \(\dfrac{1}{3}\);  \(\dfrac{2}{3}\)\(\dfrac{4}{3}\)

Hoàng Yến Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 21:35

a) Xét ΔOBH và ΔODA có 

OB=OD(gt)

\(\widehat{BOH}=\widehat{DOA}\)(hai góc đối đỉnh)

OH=OA(O là trung điểm của HA)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: \(\widehat{OHB}=\widehat{OAD}\)(hai góc tương ứng)

mà \(\widehat{OHB}=90^0\)(gt)

nên \(\widehat{OAD}=90^0\)

hay AH\(\perp\)AD(đpcm)

b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có

OA=OH(O là trung điểm của AH)

\(\widehat{AOE}=\widehat{HOC}\)(hai góc đối đỉnh)

Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(hai cạnh tương ứng)(1)

Ta có: ΔAOD=ΔHOB(cmt)

nên AD=HB(Hai cạnh tương ứng)(2)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra AD=AE

mà E,A,D thẳng hàng(gt)

nên A là trung điểm của DE

Peter Tuấn
15 tháng 7 2021 lúc 22:48

) Xét ΔOBH và ΔODA có 

OB=OD(gt)

ˆBOH=ˆDOABOH^=DOA^(hai góc đối đỉnh)

OH=OA(O là trung điểm của HA)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: ˆOHB=ˆOADOHB^=OAD^(hai góc tương ứng)

mà ˆOHB=900OHB^=900(gt)

nên ˆOAD=900OAD^=900

hay AH⊥⊥AD(đpcm)

b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có

OA=OH(O là trung điểm của AH)

ˆAOE=ˆHOCAOE^=HOC^(hai góc đối đỉnh)

Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(hai cạnh tương ứng)(1)

Ta có: ΔAOD=ΔHOB(cmt)

nên AD=HB(Hai cạnh tương ứng)(2)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra AD=AE

mà E,A,D thẳng hàng(gt)

nên A là trung điểm của DE

Hoàng Yến Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2021 lúc 20:40

Bài 3:

a) Ta có: \(A-\left(9x^3+8x^2-2x-7\right)=-9x^3-8x^2+5x+11\)

\(\Leftrightarrow A=-9x^3-8x^2+5x+11+9x^3+8x^2-2x-7\)

\(\Leftrightarrow A=3x+4\)

b) Đặt A(x)=0

nên 3x+4=0

hay \(x=-\dfrac{4}{3}\)

Nguyễn Quỳnh Chi
Xem chi tiết

Bài 2:

a: Xét ΔABC có

BI,CI là các đường phân giác

BI cắt CI tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

b: Ta có: \(\widehat{DIB}=\widehat{IBC}\)(hai góc so le trong, DI//BC)

\(\widehat{DBI}=\widehat{IBC}\)(BI là phân giác của góc DBC)

Do đó: \(\widehat{DIB}=\widehat{DBI}\)

=>ΔDIB cân tại D

c: Ta có: \(\widehat{EIC}=\widehat{ICB}\)(hai góc so le trong, EI//BC)

\(\widehat{ECI}=\widehat{ICB}\)(CI là phân giác của góc ECB)

Do đó: \(\widehat{EIC}=\widehat{ECI}\)

=>ΔEIC cân tại E

d: Ta có: ΔDIB cân tại D

=>DB=DI

Ta có: ΔEIC cân tại E

=>EI=EC

Ta có: DI+IE=DE

mà DI=DB

và EC=EI

nên DB+EC=DE

Bài 1:

a: Xét ΔABC có

BE,CF là các đường phân giác

BE cắt CF tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

=>AI là phân giác của góc BAC
b: ta có: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}\)(BE là phân giác của góc ABC)

\(\widehat{ACF}=\widehat{FCB}=\dfrac{\widehat{ACB}}{2}\)(CF là phân giác của góc ACB)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABE}=\widehat{EBC}=\widehat{ACF}=\widehat{FCB}\)

c: ta có: \(\widehat{EBC}=\widehat{FCB}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

d: Xét ΔABE và ΔACF có

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

=>BE=CF

e:

Ta có: ΔAEB=ΔAFC

=>AE=AF

Ta có: AE+EC+AC
AF+FB=AB

mà AE=AF 

và AC=AB

nên EC=FB

Xét ΔFIB và ΔEIC có

FB=EC

\(\widehat{FBI}=\widehat{ECI}\)

BI=CI

Do đó: ΔFIB=ΔEIC

Huy Trần
Xem chi tiết