CMR: nếu 1/x+1/y+1/z = 1/x+y+z thì 1/x^2018 + 1/y^2018 +1/z^2018 = 1/x^2018+1/y^2018+1/z^2018
CMR với x, y, z khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì hai trong ba số x, y, z đối nhau
Áp dụng chứng minh : \(\dfrac{1}{x^{2018}}+\dfrac{1}{y^{2018}}+\dfrac{1}{z^{2018}}=\dfrac{1}{x^{2018}+y^{2018}+z^{2018}}\)
Chứng minh rằng nếu x,y,z là ba số thỏa mãn x+y+z=2018 và 1/x+1/y+1/z=1/2018 thì một trong ba số x,y,z phải có một số bằng 2018
Lời giải:
Vì \(x+y+z=2018; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2018}\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)
\(\Leftrightarrow (x+y)\left[\frac{1}{xy}+\frac{1}{z(x+y+z)}\right]=0\)
\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)
\(\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0\)
\(\Leftrightarrow (x+y)(y+z)(x+z)=0\)
\(\Rightarrow \left[\begin{matrix} x+y=0\\ y+z=0\\ z+x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x+y+z=z\\ x+y+z=x\\ x+y+z=y\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 2018=z\\ 2018=x\\ 2018=y\end{matrix}\right.\)
Tức là trong ba số $x,y,z$ phải có ít nhất một số bằng $2018$
cho: x^2+y^2+z^2+1/x^2+1/y^2+1/z^2=6 . tinh A=x^2018+y^2018+z^2018
Ta có: x^2 + y^2 +z^2 +1/x^2 +1/y^2 +1/z^2 =6
(x^2 -2 + 1/x^2) +(y^2 -2 +1/y^2) +(z^2 -2 +1/z^2) = 0
(x -1/x)^2 +(y-1/y)^2 +(z-1/z)^2 = 0
Suy ra: x- 1/x = 0 ,y- 1/y = 0 và z- 1/z = 0
x^2 -1/ x= 0,y^2 -1/ y=0 và z^2-1 /z =0
x^2 -1=0,y^2-1=0 và z^2-1=0
x^2 = 1.y^2 =1 và z^2 =1
Do đó: x^2018 = y^2018 =z^2018 =1
Vậy A =x^2018 +y^2018 +z^2018 =3
Cho x,y,z khác 0 TM x+y+z=2018 và 1/x + 1/y + 1/z =1/2018 . CMR tồn tại ít nhất 1 trong ba số x,y,z bằng2018
Ta co : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y+z}-\dfrac{1}{z}\)
=> \(\dfrac{x+y}{xy}=\dfrac{-x-y}{z\left(x+y+z\right)}\)
=> \(\left(x+y\right)\left(x+y+z\right)z+\left(x+y\right)xy=0\)
=> (x+y)(xz+zy+z2+xy)=0
=> (x+y)(x+z)(y+z)=0
=> x+y=0 hoac x+z=0 hoac y+z=0 , do x+y+z=2018
=> z=2018 hoac y=2018 hoac z=2018
=> DPCM
Cho 3 so x, y, z thoa man xyz = 2018. CMR :
\(\dfrac{2018x}{xy+2018+2018z}+\dfrac{y}{yz+y+2018}+\dfrac{z}{xz+z+1}=1\)
Đặt biểu thức trên là A, thay xyz = 2018, ta dược :
\(A=\dfrac{x^2yz}{xy+xyz+x^2yz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)
\(=\dfrac{xy\left(xz\right)}{xy\left(1+z+xz\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{z+zx+1}\)
\(=\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{z+zx+1}=\dfrac{xz+1+z}{1+z+xz}=1\)
⇒ĐPCM
Please help me!!!!!!!!!!!
I feel this exercise is difficult!!!!!!
Tìm x,y,z biết
[1-2x]2018 - [y-4/5]2018 = -1/2018. [x+y+z]2018
tìm x, y ,z biết
[1-2x]2018+[y-4/5]2018= -1/2018.[x+y-z]2018
cho x,y,z >0 thỏa mãn xyz=1. tìm gtln của biểu thức M= 2018\(x^2+y^2+1)+2018\(z^2+y^2+1)+2018\(z^2+x^2+1)
Cho 3 số thực x, y, z khác 0 thỏa mãn x +y +z =1. Và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Tính giá trị của biểu thức M=\(x^{2018}+y^{2018}+z^{2018}\)