Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Hiền
Xem chi tiết
doraemon
Xem chi tiết
Akai Haruma
26 tháng 12 2018 lúc 0:07

Lời giải:
\(x+y+z=2018; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2018}\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)

\(\Leftrightarrow (x+y)\left[\frac{1}{xy}+\frac{1}{z(x+y+z)}\right]=0\)

\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)

\(\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0\)

\(\Leftrightarrow (x+y)(y+z)(x+z)=0\)

\(\Rightarrow \left[\begin{matrix} x+y=0\\ y+z=0\\ z+x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x+y+z=z\\ x+y+z=x\\ x+y+z=y\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 2018=z\\ 2018=x\\ 2018=y\end{matrix}\right.\)

Tức là trong ba số $x,y,z$ phải có ít nhất một số bằng $2018$

Lương Song Hoành
Xem chi tiết
Pham Van Hung
24 tháng 7 2018 lúc 13:55

Ta có: x^2 + y^2 +z^2 +1/x^2 +1/y^2 +1/z^2 =6

          (x^2 -2 + 1/x^2) +(y^2 -2 +1/y^2) +(z^2 -2 +1/z^2) = 0

          (x -1/x)^2 +(y-1/y)^2 +(z-1/z)^2 = 0

Suy ra: x- 1/x = 0 ,y- 1/y = 0 và z- 1/z = 0

            x^2 -1/ x= 0,y^2 -1/ y=0 và z^2-1 /z =0

            x^2 -1=0,y^2-1=0 và z^2-1=0

            x^2 = 1.y^2 =1 và z^2 =1

Do đó: x^2018 = y^2018 =z^2018 =1

Vậy A =x^2018 +y^2018 +z^2018 =3           

l am ADv
Xem chi tiết
TNA Atula
23 tháng 1 2018 lúc 22:17

Ta co : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y+z}-\dfrac{1}{z}\)

=> \(\dfrac{x+y}{xy}=\dfrac{-x-y}{z\left(x+y+z\right)}\)

=> \(\left(x+y\right)\left(x+y+z\right)z+\left(x+y\right)xy=0\)

=> (x+y)(xz+zy+z2+xy)=0

=> (x+y)(x+z)(y+z)=0

=> x+y=0 hoac x+z=0 hoac y+z=0 , do x+y+z=2018

=> z=2018 hoac y=2018 hoac z=2018

=> DPCM

Tiểu Thư Mây Trắng
Xem chi tiết
Lê Thị Hồng Vân
3 tháng 2 2018 lúc 23:25

Đặt biểu thức trên là A, thay xyz = 2018, ta dược :

\(A=\dfrac{x^2yz}{xy+xyz+x^2yz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+x+1}\)

\(=\dfrac{xy\left(xz\right)}{xy\left(1+z+xz\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{z+zx+1}\)

\(=\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{z+zx+1}=\dfrac{xz+1+z}{1+z+xz}=1\)

⇒ĐPCM

Tiểu Thư Mây Trắng
3 tháng 2 2018 lúc 23:28

Please help me!!!!!!!!!!!khocroikhocroikhocroi

I feel this exercise is difficult!!!!!!bucminh

Lion Sky
Xem chi tiết
Lion Sky
Xem chi tiết
Hữu Tài Nguyễn
Xem chi tiết
hattori heiji
13 tháng 5 2018 lúc 16:56

Hỏi đáp Toán

Hữu Tài Nguyễn
13 tháng 5 2018 lúc 13:41

các bạn giải hộ mik vs khó quá

Võ Hoàng Thảo Phương
Xem chi tiết