cho: x^2+y^2+z^2+1/x^2+1/y^2+1/z^2=6 . tinh A=x^2018+y^2018+z^2018
Cho x, y, z thỏa mãn:
\(\frac{x}{2017}+\frac{y}{2018}+\frac{z}{2019}=1\)
\(\frac{2017}{x}+\frac{2018}{y}+\frac{2019}{z}=0\)
CMR:\(\frac{x^2}{2017^2}+\frac{y^2}{2018^2}+\frac{z^2}{2019^2}=1\)
cho x + y + z = 2018
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2018\)
cm x,y,z đôi 1 đối nhau
Cho x, y , z > 0 thỏa mãn xyz = 1
Tìm GTLN của biểu thức : M = \(\frac{2018}{x^3+y^3+1}+\frac{2018}{y^3+z^3+1}+\)\(\frac{2018}{z^3+x^3+1}\)
cho :
x+y+z= 2018
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2018\)
Chứng minh x, y, z đôi một đối nhau ?
cho 3 số x,y,z thỏa mãn x+y+z=1/x+1/y+1/z. tính q=(x^2018 - 1).[(-y)^2019 + 1].(z^2020 - 1)
1. Cho x;y;z thỏa mãn
\(x+y+z=x^2+y^2+z^2=x^3+y^3+z^3=1\)=1
Tính \(P=x^{2017}+y^{2018}+z^{2019}\)
2. Cho \(M=2018^2+2018^2.2019^2+2019^2\)
CM: M là số chính phương.
3. Cho ax+by=c; bx+cy=a; cx+ay=b. CMR: \(a^3+b^3+c^3=3abc\)
x2 + 2y = y2 + 2z = z2 + 2x = -1
Tính B = x2018 + y2018 + z2018
Q= /x-1/ + /y-2/ + /z-3/ với /x/ + /y/ + /z/ = 2018