Tìm số tự nhiên x,y biết
22x.3y=144
Tìm số tự nhiên x và y, biết : (5x+3y) + (5x-3y)=2022
Ta có: 2022 là một số chẵn nên (x+y)(x-y) chia hết cho 2 tức là (x+y) hoặc (x-y) chia hết cho 2.
Khi đó x và y cùng tính chẵn lẻ (cùng chẵn hoặc cùng lẻ) suy ra x+y và x-y đều chia hết cho 2.
Nên tích (x+y)(x-y) chia hết cho 4 mà 2022 không chia hết cho 4 nên không có x,y thỏa mãn bài toán
Vũ Duy Quang
Đề bài là 5x+3y và 5x-3y chứ không phải là x,y
Xin lỗi bạn Vũ Minh Huyền mình làm bài (x+y)(x-y)=2010 rất nhiều lần rồi nên nhầm sang đây.
Tìm số tự nhiên x,y biết:
22x.3y=144
Tìm số tự nhiên x và y, biết 22x.3y=144
22x.3y=144
22x.3y=16.9(có thể là bằng 3.48 nhưng nó không hợp lệ)
nếu : 22x.3y=16.9
22x=16 thì x=2 ;3y=9 thì y=2
(22x không thể bằng 9 đk vì không có số nào 22x=9 đk cả)
Tìm số tự nhiên x, y biết: xy + 3x + 3y = 0
Giai
Vì x,y là số tự nhiên nên x ≥ 0 và y ≥ 0
cho nên xy 3x , 3y đều ≥ 0
cho nên để biểu thức = 0 . Thì:
xy = 0
3x = 0
3y = 0
=> x = y = 0
tìm các số tự nhiên x,y biết xy-3y+x=10
xy-3y+x=10
\(\Leftrightarrow y\left(x-3\right)+\left(x-3\right)=7\)
\(\Leftrightarrow\left(x-3\right)\left(y+1\right)=7\)
x,y là số tự nhiên => x-3; y+1 là số tự nhiên
=> x-3; y+1\(\inƯ\left(7\right)=\left\{1;7\right\}\)
Ta có bảng
x-3 | 1 | 7 |
y+1 | 7 | 1 |
x | 4 | 10 |
y | 6 | 0 |
Vậy (x;y)={(7;6);(1;0)}
a)Tìm x,biết 2l3x-1l+1=5
b) Tìm số tự nhiên y biết 3y+3y+2=810
c)Tính giá trị của biểu thức M=3x2-5y+1 tại ,x=-3,y=4
a/\(2\left|3x-1\right|+1=5\)
\(\Rightarrow2\left|3x-1\right|=4\)
\(\Rightarrow\left|3x-1\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=3\\3x=-1\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=1\)
Vậy x = 1
b/\(3^y+3^{y+2}=810\)
\(\Rightarrow3^y+3^y\cdot3^2=810\)
\(\Rightarrow3^y\left(1+3^2\right)=810\)
\(\Rightarrow3^y\cdot10=810\)
\(\Rightarrow3^y=81\)
\(\Rightarrow y=4\)
c/Thay x = -3, y = 4 vào M, ta có:
\(M=3\cdot\left(-3\right)^2-5\cdot4+1\)
\(=3\cdot9-20+1\)
\(=27-20+1\)
\(=8\)
a)Ta có:
\(2\left|3x-1\right|+1=5\)
\(\Rightarrow2\left|3x-1\right|=4\)
\(\Rightarrow\left|3x-1\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=3\\3x=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) Ta có:
\(3^y+3^{y+2}=810\)
\(\Rightarrow3^y\left(1+3^2\right)=810\)
\(\Rightarrow3^y.10=810\)
\(\Rightarrow3^y=81\)
\(\Rightarrow y=4\)
c) Thay \(x=-3;y=4\) ta được:
\(M=3\left(-3\right)^2-5.4+1=3.9-20+1=27-20+1=8\)
Tìm x,y là số tự nhiên biết: 5x - 3y = 2xy - 11
Trả lời:
Ta có: 5x - 3y = 2xy - 11
<=> 2 ( 5x - 3y ) = 2 ( 2xy - 11 )
<=> 10x - 6y = 4xy - 22
<=> 10x - 6y = 4xy - 15 - 7
<=> 10x - 6y - 4xy + 15 = - 7
<=> - ( 4xy - 10x + 6y - 15 ) = - 7
<=> 4xy - 10x + 6y - 15 = 7
<=> ( 4xy - 10x ) + ( 6y - 15 ) = 7
<=> 2x ( 2y - 5 ) + 3 ( 2y - 5 ) = 7
<=> ( 2x + 3 ) ( 2y - 5 ) = 7
=> 2x + 3 thuộc ước của 7; 2y - 5 thuộc ước của 7
Mà Ư(7) = { 1; - 1; 7; - 7 }
nên ta có bảng sau:
2x+3 | 1 | -1 | 7 | -7 |
2y-5 | 7 | -7 | 1 | -1 |
x | -1 | -2 | 2 | -5 |
y | 6 | -1 | 3 | 2 |
Mà x, y là số tự nhiên nên cặp ( x ; y ) thỏa mãn đề bài là: ( 2 ; 3 )
Vậy x = 2; y = 3
5x - 3y = 2xy - 11
<=> 3y + 2xy - 5x = 11
<=> 6y + 4xy - 10x = 22
<=> 2y(3 + 2x) - 10x - 15 = 7
<=> 2y(3 + 2x) - 5(3 + 2x) = 7
<=> (2x + 3)(2y - 5) = 7
Lập bảng xét các trường hợp
2x + 3 | 1 | 7 | -1 | -7 |
2y - 5 | 7 | 1 | -7 | -1 |
x | -1 | 2 | -2 | -5 |
y | 6 | 3 | -1 | 2 |
Vậy x = 2 ; y = 3
\(5x-3y=2xy-11\)
\(\Leftrightarrow\)\(10x-6y=4xy-22\)
\(\Leftrightarrow\)\(\left(10x-4xy\right)+\left(15-6y\right)\)\(=-7\)
\(\Leftrightarrow\)\(2x\left(5-2y\right)+3\left(5-2y\right)\)\(=-7\)
\(\Leftrightarrow\)\(\left(5-2y\right)\left(2x+3\right)\)\(=-7\)
Vì \(2x+3\)\(\varepsilon\)\(Ư\left(7\right)\)Nên ta có:
\(2x+3=7;5-2y=1\)
Hoặc \(2x+3=-7;5-2y=1\)
\(\Leftrightarrow\)\(y=3;x=2\) hoặc \(y=2;x=-5\)
Vậy: \(\left(x;y\right)\)\(\varepsilon\)\(\left\{\left(3;2\right);\left(2;-5\right)\right\}\)
tìm hai số tự nhiên x, y biết rằng xy+3y=66
xy+3y=66
(x+3)y=66
x+3 | 1 | 2 | 3 | 6 | 11 | 22 | 33 | 66 |
x | loại | loại | 0 | 3 | 8 | 19 | 30 | 63 |
y | 22 | 11 | 6 | 3 | 2 | 1 |
=> y(x + 3) = 66
Mà 66 = 6 . 11 = 6(8 + 3)
=> y = 6 / x = 8
Vì xy+3y=66
=>y=3 hoặc y=8
TH1: y=3 =>xy+3y=66
x3+33=66
x3 =66-33
x3 =33
=>x=3
TH2: y=8 =>xy+3y=66
x8+38=66
x8 =66-38
x8 =28
=>x=2
Vậy
x | 2 | 3 |
y | 8 | 3 |
Tìm số tự nhiên x, y biết: x2+3y2=84
Vì x, y là các số tự nhiên nên suy ra: x2, y2 là các số chính phương.
Ta có: 84 ⋮ 3, 3y2 ⋮ 3 nên suy ra: x2 ⋮ 3, mà x2 là số chính phương nên suy ra: x ⋮ 3.
+) Với x = 0, từ (1) suy ra: 3y2 = 84 => y2 = 84 : 3 = 28 (Loại vì 28 không phải là số chính phương).
+) Với x = 3, từ (1) suy a: 3y2 = 84 – 32 = 84 – 9 = 75
=> y2 = 75 : 3 = 25 = 52
=> y = 5 (Vì y là số tự nhiên) (Thỏa mãn)
+) Với x = 6, từ (1) suy ra: 3y2 = 84 – 62 = 84 – 36 = 48
=> y2 = 48 : 3 = 16 = 42
=> y = 4 (Thỏa mãn)
+) Với x = 9, từ (1) suy ra: 3y2 = 84 – 92 = 84 – 81 = 3
=> y2 = 3 : 3 = 1 = 12
=> y = 1 (Thỏa mãn)
+) Với x ≥ 12 => x2 ≥ 122 = 144 (Không thỏa mãn (1)) (Loại)
KL: (x, y) ∈ {(3, 5); (6, 4); (9, 1)}.