Cho a,b,c>0.CM:
ab+bc>ac
cho a,b,c>0, a+b+c=1. cm:
\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}>=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}+1\)
cho a+b+c=0.cm: a^4+b^4+c^4=2(ab+bc+ac)
Cho a+b+c=2 và ab+bc+ac=1. CM: \(0\le a,b,c\le\dfrac{4}{3}\)
Ta có \(a+b+c=2\Leftrightarrow b+c=2-a\).
Do đó \(1=ab+bc+ca=a\left(b+c\right)+bc=a\left(2-a\right)+bc\Leftrightarrow bc=a^2-2a+1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4bc\le\left(b+c\right)^2\Leftrightarrow4\left(a^2-2a+1\right)\le\left(2-a\right)^2\Leftrightarrow3a^2-4a\le0\Leftrightarrow a\left(3a-4\right)\le0\Leftrightarrow0\le a\le\dfrac{4}{3}\).
Tương tự với b, c. Ta có đpcm.
Chú ý: A²+B²=0 =>A=0,B=0
a) cho a²+b²+c²=ab+bc+ac. Cm a=b=c
b) cho a²-2a+b²+4b+4c²-4c+6=0. Tìm a,b,c?
a) We have :
a2 + b2 + c2 = ab + bc + ac
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)
b) We have :
a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0
(a2 - 2a + 1) + (b2 + 2.2b + 4) + (4c2 - 4c + 1) = 0
(a - 1)2 + (b + 2)2 + (2c - 1)2 = 0
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}\)
Cho 3 điểm A , B , C bất kì. Có thể kết luận điều gì về 3 điểm A, B, C biết
a) AB = 7,3 cm ; BC = 12,5 cm ; AC = 19,8 cm
b) AB = 9,2 cm ; BC = 15,4 cm ; AC = 6,2 cm
c) AB = 9 cm ; BC = 3 cm ; AC = 11 cm
Cho a,b,C>0 cm: 2/(a^2+bc)+2/(b^2+ac)+2/(c^2+ab)<hoặc=a+b+c/2abc
Cho ba điểm A, B, C cùng nằm trên một đường thẳng. Hỏi điểm nào nằm giữa hai điểm còn lại, nếu:
a) AB = l cm, BC = 2 cm, CA = 3 cm;
b) AB = 7 cm, BC = 3 cm, AC = 4 cm;
c) AB = 4cm, AC = CB = 2cm;
d)AB = AC = 1 2 BC.
a) Nhận thấy AB + BC = AC nên điểm B nằm giữa hai điểm A và C
b, c) HS tự làm.
d) Nhận thấy AB + AC = 1 2 BC + 1 2 BC = BC nên điểm A nằm giữa hai điểm B và C.
trên tia Ax lâý 2 điểm B và C tính khoảng cách AC biết
a) AB=7cm BC=2cm
b) AB=a(cm) BC=b(cm) . (0<a<b)
giúp mình với
a. Vì 2 điểm B và C thuộc tia Ax(gt)
Suy ra: AC= AB + BC
Thay số: AC = 7+2=9
Vậy AC =9 cm
b. Làm tương tự chỉ cần thay AB=a BC=b thôi
cho a,b,c >0 cm a^2+b^2+c^2+2abc+1>=2(ab+bc+ac)