Tìm x ∈ N để:
x ∈ B(3)và 21≤x≤51
Tìm các số tự nhiên x sao cho:
a) x ∈ B ( 3 ) v à 21 ≤ x ≤ 51 ;
b) x ∈ Ư ( 30 ) v à x ≥ 7 ;
c) x ⋮ 3 v à 51 < x ≤ 78 ;
d) 30 ⋮ x v à x ≤ 6 .
a) x ϵ {21; 24; 27; 30; 33; 36; 39; 42; 45; 48; 51}.
b) x ϵ {10;15;30}.
c) x ϵ {54;57;60;63;66;69;72;75;78}.
d) x ϵ {1;2;3;5;6}.
1. Tìm tất cả các phân số = phân số 34/51 và có mẫu là số tự nhiên ngỏ hơn 16
2. Cho A= 5/n-4
a, Tìm n thuộc Z để A là phân số
b, tìm n thuộc z để a là số nguyên
3. Cho B=x-2/x+51
a, tìm x thuộc z để b là phân số
b, tìm x thuộc z để b là số nguyên
Tìm số nguyên x biết
a, [( 10 - x ) .2-51] : 3 - 2 = 3
b, |-21-x| - 32 = - 15
a, [( 10 - x ) .2-51] : 3 - 2 = 3
[( 10 - x ) .2-51] : 3 = 3 + 2
[( 10 - x ) .2-51] : 3 = 5
( 10 - x ) .2 - 51 = 5 . 3
( 10 - x ) . 2 - 51 = 15
( 10 - x ) . 2 = 15 + 51
( 10 - x ) . 2 = 66
10 - x = 66 : 2
10 - x = 33
x = 10 - 33
x = -23
b, |-21-x| - 32 = - 15
I-21-xI = - 15 + 32
I-21-xI = 17
21 - x = 17
x = 21 - 17
x = 4
a, Tìm các số nguyên x ,y thỏa mãn x.y=2016 và x+ y = -95
b, Tìm các số nguyên n để : 7n - 8/ 2n -3 có giá trị lớn nhất
c, Tìm các số x ,y ,z nguyên dương thỏa mãn : x^3+5x^2+21=7^y và x + 5 = 7^z
Cho A =\(\dfrac{3}{x+3}\) + \(\dfrac{x+21}{x^2-9}\) và B = \(\dfrac{x-3}{x+2}\)
1, tính B khi x = -2
2, tìm x(nguyên) để H = A.B
3, rút gọn A
Tìm x thuộc N để :
a) x2+65 là số chính phương
b)x-13 và x+12 là số chính phương
c)x+51 và x-38 là số chính phương
Bài 1 \(C=\frac{2}{n-1};D=\frac{n+4}{n+1}\)
a)tìm n để C và D tồn tại b
b)tìm n để C và D là số nguyên.
bài 2:tìm x:
x+(x+1)+(x+2)+............+19+20+21=0
2.
Tham khảo:1.Tìm số nguyên x biết :x+(x+1)+(x+2)+....19+20=20
1. viết x+(x+1)+(x+2)+....19+20=20
=x+(x+1)+(x+2)+...+(-2)+(-1)+0+1+2+......
=> x+(x+1)+(x+2)+...+(-2)+(-1)+0+1+2+...+19...
do đó vế trái là tổng của các căp số đối
vậy x= (-19)
tìm số tự nhiên x lớn nhất , biết rằng
17 chia hết cho x ; 21 chia hết cho x và 51 cũg chia hết cho x
17 chia hết cho x ⇒ x ∈ Ư(17)
21 chia hết cho x ⇒ x ∈ Ư(21)
51 cũng chia hết cho x ⇒ x ∈ Ư(51)
Mà x là số lớn nhất nên:
x ∈ ƯCLN(17, 21, 51)
Ta có:
\(17=17\)
\(21=3\cdot7\)
\(51=17\cdot3\)
\(\RightarrowƯCLN\left(17,21,51\right)=1\)
Vậy x = 1
Tìm x thuộc Z:
a) -17 . |x| = -51
b) -7 .|x + 3| = -7^2
c) 4.x - 15 = -75 - x
d) 72 - 3x = 5x = 8
e) ( x - 2)^2 + 5 = 21