Cho tam giác ABC cân tại A. AB=AC=13 cm, BC=10 cm. Tính cos A
Cho tam giác ABC cân tại A có AB = AC = 13 cm ; BC = 10 cm.
Tính cos B .
Kẻ đg cao AH thì AH cũng là trung tuyến
Do đó \(BH=\dfrac{1}{2}BC=5\left(cm\right)\)
\(\Rightarrow\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{5}{13}\)
Cho tam giác ABC cân tại A Gọi I là trung điểm của BC biết AB = AC = 13 cm , BC = 12 cm Tính AI
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
Cho tam giác ABC cân tại A , trung tuyến AM biết AB = 13 cm, BC = 10 cm
a) Tính AM
b) Trên Am lấy điểm G sao cho GM = 1/3 AM , tia BG cắt AC tại N . CM : NA=NC
cái này thì mình ko biết làm lắm nên ko giải
Cho tam giác ABC vuông tại A, tại C kẻ đường phân giác cắt BC tại D. Từ D kẻ DE vuông góc BC a)c/m tam giác ACD=tam giác ACE b)c/m tam giác ADE cân c)cho AB=12 cm, AC=13. Tính BC, tính chu vi tam giác ABC
Sửa đề: cắt AB tại D.
a) Sửa đề: ΔACD=ΔECD
Xét ΔACD vuông tại A và ΔECD vuông tại E có
CD chung
\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))
Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)
b) Ta có: ΔACD=ΔECD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
cho tam giác abc cân tại a. phân giác be cắt ac tại e biết ab=15 cm; bc=10 cm
a) tính ae; ec
Lời giải:
Vì $ABC$ là tam giác cân tại $A$ nên $AB=AC=15$ cm
Áp dụng tính chất tia phân giác:
$\frac{AE}{EC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}$
$\Rightarrow \frac{AE}{AE+EC}=\frac{3}{5}$
$\Rightarrow \frac{AE}{AC}=\frac{AE}{15}=\frac{3}{5}$
$\Rightarrow AE=9$ (cm)
$EC=AC-AE=15-9=6$ (cm)
Cho tam giác ABC cân tại A . Vẽ AH vuông góc với BC (H thuộc BC).
a. CM: tam giác ABH= tam giác ACH và H là trung điểm BC
b.cho biết AC = 13 cm; AH = 12 cm. Tính BC
c. Gọi M là trung điểm của AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . CMR: tam giác AEB cân .
d. Trên cạnh AB; AC lần lượt lấy các điểm D ; F sao cho BD = AF . CM : EF< DF/2
cho tam giác abc cân tại a phân giác góc a cắt bc tại h chứng minh rằng tam giác ahb= tam giác ahc biết ah=4 cm, bc=6 cm, tính ab, ac
Vì AH là đường phân giác mà tam giác ABC cân tại A
=> AH là đường trung tuyến => BH = HC
Xét tam giác AHB và tam giác AHC có :
AH _ chung
BH = HC ( cmt )
AB = AC
Vậy tam giác AHB = tam giác AHC ( c.c.c )
Vì AH là đường trung tuyến => BH = BC/2 = 3 cm
và
nãy mình ấn lộn bạn thông cảm mình nhé
và AH cũng đồng thời là đường cao
Xét tam giác AHB vuông tại H
\(AB=\sqrt{AH^2+BH^2}=\sqrt{16+9}=5cm\)
=> BA = AC = 5 cm ( do tam giác ABC cân tại A )
Cho tam giác abc cân tại b . Kẻ bh vuông góc ac (h thuộc ac) Cm a) tam giác abc = tam giác cbh b) cho bh = 4 cm, ac = 6 cm . Tính bc =? c) kẻ he vuông góc ab, hf vuông góc bc . Cm be= bf
Cho tam giác ABC cân tại A có AD là đường phân giác.
a) Chứng minh ∆ A B D = ∆ A C D .
b) Gọi G là trọng tâm của tam giác ABC. Chứng mình ba điểm A, D, G thẳng hàng.
c) Tính DG biết AB = 13 cm, BC = 10 cm.
a, Xét tam giác ABH và tam giác ACH vuông tại H có: +, AB = AC ( vì tam giác ABC cân tại A)
+, AH chung
=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm
b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng
c, Vì tam giác ABH = tam giác ACH => góc BAH = góc CAH
Xét tam giác ABG và tam giác ACG có
AB = AC ( vì tam giác ABC cân tại A )
góc BAH = góc CAH ( chứng minh trên)
AG chung
=>tam giác ABG = tam giác ACG(c.g.c)
=> góc ABG = góc ACG