GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN
a) 4.(x+y+z)=xyz
b) 2x2y-5xy+7x-3y=3x2+5
HELP ME
Giải phương trình nghiệm nguyên:
3x2 + 5xy - 8x -2y2 - 9y - 4 = 0
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t\in\mathbb{N}$)
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng phương trình tích đơn giản rồi. Bạn chỉ cần xét TH. Lưu ý rằng $t+7y+2>0$ và $t-7y-2, t+7y+2$ có cùng tính chẵn lẻ.
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Cho hệ phương trình x + 1 y = 2 2 x − 3 y = 1 . Biết nghiệm của hệ phương trình là (x; y), tính 5 x y
A. 35 3
B. 21 5
C. 7 3
D. 21 25
ĐK: y ≠ 0
Ta có
x + 1 y = 2 2 x − 3 y = 1 ⇔ 2 x + 2 y = 4 2 x − 3 y = 1 ⇔ x + 1 y = 2 5 y = 3 ⇔ y = 5 3 x + 1 5 3 = 2 ⇔ x = 7 5 y = 5 3
Vậy hệ phương trình có 1 nghiệm duy nhất ( x ; y ) = 7 5 ; 5 3 ⇒ 5 x y = 21 5
Đáp án: B
Bài 1: tìm nghiệm nguyên
a ) \(y^2+2xy-7x=12\)
b ) \(x^2+3y^2+4xy=2x+6y+24\)
mọi ngừi ơi giúp em với ạ
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
tìm nghiệm nguyên của phương trình
2x2+3y2-5xy-x+3y-4=00
Giải phương trình nghiệm nguyên
a) 3x^2−4y^2=18
b) 19x^2+28y^2=2001
c) x^2=2y^2−8y+3
d) x^2+y^2-4x+4y=1
a. 3x2 - 4y2 = 18
<=> \(\left\{{}\begin{matrix}3x^2=18+4y^2\\4y^2=-\left(3x^2-18\right)\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{18+4y^2}{3}}\\y=\sqrt{\dfrac{-3x^2+18}{4}}\end{matrix}\right.\)
b, c, d tương tự nhé
b. 19x2 + 28y2 = 2001
<=> \(\left\{{}\begin{matrix}19x^2=2001-28y^2\\28y^2=2001-19x^2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=\sqrt{\dfrac{2001-28y^2}{19}}\\y=\sqrt{\dfrac{2001-19x^2}{28}}\end{matrix}\right.\)
c. x2 = 2y2 - 8y + 3
<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\8y=2y^2+3-x^2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=\sqrt{2y^2-8y+3}\\y=\dfrac{2y^2+3-x^2}{8}\end{matrix}\right.\)
d. x2 + y2 - 4x + 4y = 1
<=> \(\left\{{}\begin{matrix}x^2=1-y^2+4x-4y\\y^2=1-x^2+4x-4y\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=\sqrt{1-y^2+4x-4y}\\y=\sqrt{1-x^2+4x-4y}\end{matrix}\right.\)
Giải phương trình nghiệm nguyên
a) 3x^2−4y^2=18
b) 19x^2+28y^2=2001
c) x^2=2y^2−8y+3
d) x^2+y^2-4x+4y=1
giải hệ phương trình :
6(x+y)=5xy
12(y+z)=7yz
4(z+x)=3xz
Hệ \(\Leftrightarrow\frac{x+y}{xy}=\frac{5}{6};\frac{y+z}{yz}=\frac{7}{12};\frac{x+z}{xz}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\left(1\right);\frac{1}{y}+\frac{1}{z}=\frac{7}{12}\left(2\right);\frac{1}{x}+\frac{1}{z}=\frac{3}{4}\left(3\right)\)
Cộng (1), (2),(3) vtv:\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=\frac{13}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{13}{12}\left(4\right)\)
Lấy (4) trừ (1),(2),(3) :\(\frac{1}{z}=\frac{1}{4};\frac{1}{x}=\frac{1}{2};\frac{1}{y}=\frac{1}{3}\)
Vậy: \(x=2;y=3;z=4\)
Các bạn giải xót nghiệm (0;0;0) rồi nha