Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cô Gái Mùa Đông
Xem chi tiết
Edogawa Conan
Xem chi tiết
Hồng Quang
27 tháng 3 2018 lúc 21:20

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

TM Vô Danh
27 tháng 3 2018 lúc 21:24

a+b+c=0

\(\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

mk ko chắc cách bn đúng nhưng cách của mk là phù hợp nhất đó

Akai Haruma
28 tháng 3 2018 lúc 14:34

Không nên chứng minh như thế này nhé. Ở ngay phần \(a+b=\frac{3abc}{-3ab}\) đã sai sót vì bạn không tính đến trường hợp \(a=0\) hoặc $b=0$ đã thực hiện phép chia như vậy.

Sử dụng hằng đẳng thức: \((a+b)^3=a^3+b^3+3ab(a+b)\) ta có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3\)

Vì \(a+b+c=0\Rightarrow a+b=-c\). Thay vào biểu thức trên:

\((a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc\)

Do đó:

\(a^3+b^3+c^3=3abc\)

Hoàng Thiện Nhân
Xem chi tiết
Edogawa Conan
2 tháng 8 2020 lúc 8:18

Ta có: a3 + b3 + c3 = 3abc

<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0

<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0

<=> (a + b + c)[(a + b)2 - (a + b)c + c2) - 3ab(a + b + c) = 0

<=> (a + b + c)(a2  + 2ab + b2 - ac - bc + c2 - 3ab) = 0

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0

<= > (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)<=> a = b = c

Khi đó: B = \(\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
2 tháng 8 2020 lúc 19:38

ta có a3+b3+c3=3abc <=> a3+b3+c3-3abc=0

<=> (a+b)3-3ab(a+b)+c3-3abc=0

<=> (a+b+c)3-3(a+b)c(a+b+c)-3ab(a+b+c)=0

<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0

<=> a2+b2+c2-ab-bc-ca=0 (vì a+b+c=0)

<=> (a-b)2+(b-c)2+(c-a)2=0

<=> a=b=c

khi đó \(B=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)

Khách vãng lai đã xóa
Cáo Nô
Xem chi tiết
Hannnaa
Xem chi tiết
Lưu Nguyễn Hà An
21 tháng 8 2023 lúc 14:30

tham khảo nhé

Lưu Nguyễn Hà An
21 tháng 8 2023 lúc 14:31

vào trang cá nhân của mình đi mà, mình có trả lời r đó

Nguyễn Lê Thành Tín
Xem chi tiết
Nguyễn Ngọc Anh Minh
17 tháng 11 2021 lúc 14:12

Ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)

\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)

Ta có

\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)

\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)

\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)

\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)

Khách vãng lai đã xóa
huy phạm
Xem chi tiết
Nguyễn Hoàng Anh Phong
22 tháng 9 2018 lúc 19:18

ta có: a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = (a+b+c).(a2 + b2 + c2 - ab - bc -ac) = 0

mà a + b + c khác 0

=> a2 + b2 + c2 - ab - bc - ac  = 0

=> a = b = c

\(\Rightarrow A=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{3^2.a^2}=\frac{1}{3}.\)

Phạm Thùy Linh
Xem chi tiết
Lightning Farron
22 tháng 10 2016 lúc 12:28

Câu 1:

Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

Lightning Farron
22 tháng 10 2016 lúc 12:49

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

Lightning Farron
22 tháng 10 2016 lúc 12:55

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{array}\right.\)

Xét \(a+b+c=0\)\(\Rightarrow\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}\)

\(\Rightarrow A=\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)

\(=\left(1-1-\frac{c}{b}\right)\left(1-1-\frac{a}{c}\right)\left(1-1-\frac{b}{a}\right)\)

\(=\left(-\frac{c}{b}\right)\left(-\frac{a}{c}\right)\left(-\frac{b}{a}\right)=-1\)

Xét \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a-b=b-c=c-a=0\Leftrightarrow a=b=c\)

\(\Leftrightarrow A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

 

lutufine 159732486
Xem chi tiết