Giải pt: \(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}=1-2x^2}\)
Giải pt:
a.\(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)
b.\(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
a/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=4\)
\(\Leftrightarrow x+\sqrt{x+\frac{1}{4}}+\frac{1}{2}=4\)
Làm nốt
b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Làm nốt
Câu 1 : Giải pt: \(8x^2+\sqrt{\frac{1}{x}}=\frac{5}{2}\)
Câu 2: Giải pt: \(\frac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}=x+21\\\)
giải bất pt sau:
\(\frac{\sqrt{x^{2^{ }}-x-2}}{\sqrt{x-1}}+\sqrt{x-1}< \frac{2x+1}{\sqrt{x-1}}\)
Dk 1<x<2
√x^2 -x -2<x+2
5x+6>0
X > -6/5
Bpt vô nghiệm
Giải pt
\(\sqrt{2x+\frac{2013-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013-1}{\sqrt{2-x^2}}}=\sqrt{x+2013}-\sqrt[3]{x+1}\)
giải pt
a) \(\frac{\sqrt{x^3+1}}{x+3}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
b) \(\sqrt[3]{2x+1}+\sqrt[3]{2x+2}+\sqrt[3]{2x+3}=0\)
Giải pt
a) \(2x^2+\sqrt{x^2-5x-6}=10x+15\)
b) \(5\sqrt{3x^2-4x-2}-6x^2+8x+7=0\)
c) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
d) \(2\sqrt{\frac{3x-1}{x}}=\frac{x}{3x-1}+1\)
e) \(\sqrt{\frac{24x-4}{x}}=\frac{x}{6x-1}+1\)
f) \(\sqrt{\frac{2x-1}{x}}+1+\sqrt{\frac{x}{2x-1}}=\frac{3x}{2x-1}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
giải pt \(\sqrt{2x+\frac{2013x-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013x-1}{\sqrt{2-x^2}}}=\sqrt{x+2003}-\sqrt[3]{x+1}\)
giải pt \(\sqrt{2x+\frac{2013x-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013x-1}{\sqrt{2-x^2}}}=\sqrt{x+2013}-\sqrt[3]{x+1}\)
đặt đúng theo thứ tự đề bài là a;b;c;d(a;c>0)
\(\Rightarrow a^2+b^3=c^2+d^3\)
theo đề bài ta có: a-b=c-d=>a-c=b-d
ta đc hpt:\(\int^{a^2+b^3=c^2+d^3}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d^2+bd+b^2\right)}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c\right)=-\left(a-c\right)\left(b^2+bd+d^2\right)}_{a-c=b-d}\)
\(\Leftrightarrow\int^{\left(a-c\right)\left(a+c+b^2+b+d^2\right)=0\left(1\right)}_{a-c=b-d}\)
\(b^2+bd+d^2=\left(b+\frac{1}{2}d\right)^2+\frac{3}{4}d^2\ge0\)
Dấu "=" xảy ra <=> b=d=0
vì a;c>0 nên a+c>0
Dấu "=" xảy ra <=> a=c=0
=> \(a+c+b^2+bc+d^2\ge0\)
Dấu "=" xảy ra <=> a=b=c=d=0 -> vô nghiệm
Từ (1) => a=c rồi tự làm tiếp
Giải phương trình ra nhé phantuananh
Đặt a,b,b,c theo thứ tự nhé
\(a-b=c-d;a^2+b^3=c^2+d^3\)
\(a-c=b-d;\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(b^2+bd+d^2\right)\)
\(\left(a-c\right)\left(a+c\right)=-\left(a-c\right)\left(b^2+bd+d^2\right)\)
\(\left(a-c\right)\left(a+c+b^2+bd+d^2\right)=0\)
\(a-c=0\)vì cái kia >0 nhưng dấu "=" xảy ra không đồng thời với giác trị của x
Tự giải tiếp
\(\)
Giải pt:
\(\sqrt{2x+\frac{2013x-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013x-1}{\sqrt{2-x^2}}}=\sqrt{x+2013}-\sqrt[3]{x+1}\)