tìm a và 2n
2n =\(\dfrac{22\cdot2^{a+2}}{2^a+2^{a+2}+2^{a+1}}-3\)
đặt \(a=lim\dfrac{3n^3-2n+1}{4n^4+2n+1}\). tìm \(lim\dfrac{an^3-\left(a+2\right)n^2+1}{4an^3-n^2+3n+3}\)
\(a=\lim\limits\dfrac{3n^3-2n+1}{4n^4+2n+1}=\lim\limits\dfrac{\dfrac{3n^3}{n^4}-\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\dfrac{4n^4}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}=0\)
\(\Rightarrow\lim\limits\dfrac{-2n^2+1}{-n^2+3n+3}=\lim\limits\dfrac{-\dfrac{2n^2}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}+\dfrac{3}{n^2}}=-\dfrac{2}{-1}=2\)
Tìm các giới hạn sau:
\(a,lim\dfrac{2n+1}{-3n+2}\)
\(b,lim\dfrac{5n^3-2n+1}{n-2n^3}\)
\(a,lim\dfrac{2n+1}{-3n+2}\)
\(=lim\dfrac{2+\dfrac{1}{n}}{-3+\dfrac{2}{n}}=-\dfrac{2}{3}\)
\(b,lim\dfrac{5n^3-2n+1}{n-2n^3}\)
\(=lim\dfrac{5-\dfrac{2}{n^2}+\dfrac{1}{n^3}}{\dfrac{1}{n^2}-2}=\dfrac{5}{-2}\)
Tìm các giới hạn sau:
\(a,\dfrac{\left(2n+1\right)\left(3n-2\right)^2}{n^3+n-1}\)
\(b,\dfrac{2n-1}{3n^2+4n-1}\)
\(\lim\dfrac{\left(2n+1\right)\left(3n-2\right)^2}{n^3+n-1}=\lim\dfrac{n\left(2+\dfrac{1}{n}\right).n^2.\left(3-\dfrac{2}{n}\right)^2}{n^3\left(1+\dfrac{1}{n^2}-\dfrac{1}{n^3}\right)}\)
\(=\lim\dfrac{\left(2+\dfrac{1}{n}\right)\left(3-\dfrac{2}{n}\right)^2}{1+\dfrac{1}{n^2}-\dfrac{1}{n^3}}=\dfrac{2.3^2}{1}=18\)
\(\lim\dfrac{2n-1}{3n^2+4n-1}=\lim\dfrac{n\left(2-\dfrac{1}{n}\right)}{n^2\left(3+\dfrac{4}{n}-\dfrac{1}{n^2}\right)}=\lim\dfrac{2-\dfrac{1}{n}}{n\left(3+\dfrac{4}{n}-\dfrac{1}{n^2}\right)}=\dfrac{2}{+\infty}=0\)
Thu gọn A và tìm n e N biết A + 2 = 2n
Cho B=12-22+32-42+...+(2n+1)2-(2n)2. a) Tính giá trị của B khi 2n =2020. b) Tìm n lớn nhất và B,để B<1000.
Tìm các giới hạn sau:
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(b,lim\dfrac{-3n^3+1}{2n+5}\)
\(c,lim\dfrac{n^3-2n+1}{-3n-4}\)
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)
\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)
\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)
Tìm các giới hạn sau
\(a,lim\left(\sqrt{n^2+n+1}-n\right)\)
\(b,lim\dfrac{\sqrt{n^3+2n}-2n^2}{3n+1}\)
\(a,lim\left(\sqrt{n^2+n+1}-n\right)\)
\(=lim\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}\)
\(=lim\dfrac{1+\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
\(\lim\dfrac{\sqrt[]{n^3+2n}-2n^2}{3n+1}=\lim\dfrac{\sqrt[]{n+\dfrac{2}{n}}-2n}{3+\dfrac{1}{n}}=\lim\dfrac{n\left(\sqrt[]{\dfrac{1}{n}+\dfrac{2}{n^3}}-2\right)}{3+\dfrac{1}{n}}\)
\(=\dfrac{+\infty\left(0-2\right)}{3}=-\infty\)
a) Cho phân số A=\(\dfrac{2n-3}{n+7}\)
Hỏi có bao nhiêu số tự nhiên n nhỏ hơn 200 để A chưa tối giản.
b) Tìm số tự nhiên n biết:
\(\dfrac{1}{1}\)+\(\dfrac{1}{1+2}\)+\(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+....+\(\dfrac{1}{1+2+3+4+...+n}\)=\(\dfrac{200}{101}\)
Giúp với ạ!!!
b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)
=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)
=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101
=>1-1/(n+1)=100/101
=>1/(n+1)=1/101
=>n+1=101
=>n=100
Tìm n biết
a, \(\dfrac{1}{2}\). 2n + 4. 2n = 9.5n
\(\Leftrightarrow2^n\cdot\dfrac{9}{2}=9\cdot5^n\)
\(\Leftrightarrow2^n=2\cdot5^n\)
\(\Leftrightarrow2^{n-1}=5^n\)
Đến đây thì hình như là lớp 12 mới học, xin lỗi bạn!