Tìm a biết rằng a= 2n x 3n+1 x 5n+2 và a có ước là 1030200
Tìm A biết rằng A = 75 . 30n và A có số ước là 1030200
\(A=3\cdot5^2\cdot\left(2\cdot3\cdot5\right)^n=3\cdot5^2\cdot2^n\cdot3^n\cdot5^n=2^n\cdot3^{n+1}\cdot5^{n+2}\)
Vì số ước của $A$ là $1030200$ nên:
\(\left(n+1\right)\left(n+1+1\right)\left(n+2+1\right)=1030200\\ \Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)=1030200\)
Lại có \(1030200=2^3\cdot3\cdot5^2\cdot17\cdot101=\left(2^2\cdot5^2\right)\cdot\left(3\cdot17\cdot2\right)\cdot101=100\cdot101\cdot102\)
Do đó \(\left\{{}\begin{matrix}n+1=100\\n+2=101\\n+3=102\end{matrix}\right.\Rightarrow n=99\)
Vậy \(A=75\cdot30^{99}\)
B1
a) Tìm ước chung của n+1; 3n+2(n thuộc N)
b) Tìm ước chung của 2n+3 và 3n+4 (n thuộc N)
B2 Biết rằng 2 số 5n+6 và 8n+7 không phải là 2 số nguyên tố cùng nhau. tìm ước chung lớn nhất ( 5n+6; 8n+7) n thuộc N
Tìm a biết rằng a=75.30^n và a có số ước là 1030200
Ta có:\(a=75.30^n=3.5^2.2^n.3^n.5^n=2^n.3^{n+1}.5^{n+2}\)
Số ước của a bằng:
\(\left(n+1\right)\left[\left(n+1\right)+1\right]\left[\left(n+2\right)+1\right]=\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Mà a có 1030200 ước
Suy ra\(\left(n+1\right)\left(n+2\right)\left(n+3\right)=1030200=100.101.102\)
\(\Leftrightarrow n=99\)
Thay n=99 vào a ta được:
\(a=75.30^{99}=\)
Tìm số nguyên n biết:
a) 1-2n là ước của 3n+2
b) 5n+1 chia hết cho 2n-3
a) Vì 1-2n là Ư(3n+2)
\(\Rightarrow\)3n+2 \(⋮\) 1-2n
\(\Rightarrow\)-3n-2 \(⋮\) 2n-1
\(\Rightarrow\)-2(-3n-2) \(⋮\) 2n-1
\(\Rightarrow\)6n+4 \(⋮\)2n-1
\(\Rightarrow\)3(2n-1)+7 \(⋮\)2n-1
\(\Rightarrow\)7 \(⋮\) 2n-1
\(\Rightarrow\)2n-1 \(\in\)Ư(7)
Ta có:
Ư(7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
2n-1 | -1 | 1 | -7 | 7 |
n | 0 | 1 | -3 | 4 |
Vậy n \(\in\){0;1;-3;4}
b) 5n+1 \(⋮\)2n-3
\(\Leftrightarrow\)2(5n+1) \(⋮\)2n-3
\(\Leftrightarrow\)10n+2 \(⋮\)2n-3
\(\Leftrightarrow\)5(2n-3)+17 \(⋮\)2n-3
\(\Leftrightarrow\)17 \(⋮\)2n-3
\(\Rightarrow\)2n-3 \(\in\)Ư(17)
Ta có:
Ư(17)\(\in\){\(\pm\)1;\(\pm\)17}
Lập bảng:
2n-3 | -1 | 1 | -17 | 17 |
n | 1 | 2 | -7 | 10 |
Vậy n \(\in\){1;2;-7;10}
Bài 1: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 2: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
Thanks,tui cũng đang mắc ở bài 2
bài 1: Tìm số nguyên n biết:
a) 4n - 5 chia hết cho n
b) -11 là bội của n - 2
c) n - 1 là ước của 3n + 2
d) 5n + 1 chia hết cho 2n - 3
bài 2: với số nguyên x, hãy chứng minh rằng
a) x(x + 5) - 7 không chia hết cho 2
b) 3x2 - 12x + 19 không chia hết cho 3
c, \(n-1⋮3n+2\Leftrightarrow3n-3⋮3n+2\)
\(\Leftrightarrow3n+2-5⋮3n+2\Leftrightarrow-5⋮3n+2\)
hay \(3n+2\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
3n + 2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | -1/3 | -1 | 1 | -7/3 |
Vì n thuộc N => n = { 1 ; -1 }
b, hay : \(n-2\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)
n - 2 | 1 | -1 | 11 | -11 |
n | 3 | 1 | 13 | -9 |
viết cách làm giúp mình và đáp án nhé
mình đang cần gấp trong trưa nay
tìm a,biết a =75*30^ với a có ước là 1030200
1)Tìm ước chung của 2 số ab+ba và 33,biết a+b không chia hết cho 3
2)Tìm ước chung của 2 số 2n+1 và 3n+1 với n thuộc các số tự nhiên
3)Biết hai số:5n+6 và 8n+7 với n thuộc các số tự nhiên là 2 số ko nguyên tố cùng nhau.Tìm ước chung của 5n+6 và 8n+7
Tìm ước chung
a,n+1 và 2n+5
b,n+3 và 2n+5
c,2n+1 và 3n+7
d,2n+5 và 3n+7
e,5n+6 và 8n+7
a/ước chung là 3
b/ước chung là 1
mk chỉ làm mẫu 2 câu thôi còn bạn tự làm đi