\(A=3\cdot5^2\cdot\left(2\cdot3\cdot5\right)^n=3\cdot5^2\cdot2^n\cdot3^n\cdot5^n=2^n\cdot3^{n+1}\cdot5^{n+2}\)
Vì số ước của $A$ là $1030200$ nên:
\(\left(n+1\right)\left(n+1+1\right)\left(n+2+1\right)=1030200\\ \Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)=1030200\)
Lại có \(1030200=2^3\cdot3\cdot5^2\cdot17\cdot101=\left(2^2\cdot5^2\right)\cdot\left(3\cdot17\cdot2\right)\cdot101=100\cdot101\cdot102\)
Do đó \(\left\{{}\begin{matrix}n+1=100\\n+2=101\\n+3=102\end{matrix}\right.\Rightarrow n=99\)
Vậy \(A=75\cdot30^{99}\)