Phân tích đa thức thành nhân tử
a. a(a+2b)^3-b(b+2a)
b. a^3(c-b^2)+b^3(a-c^2)+c^3(b-a^2)+abc(abc-1)
Phân tích đa thức thành nhân tử.
1, a(b^2+c^2+bc)+b(c^2+a^2+ac)+c(a^2+b^2+ab)
2, (a+b+c)(ab+bc+ca)-abc
3, a(a+2b)^3-b(2a+b)^3
ai có thể giảng cho mình dạng toán tìm số tự nhiên thỏa mãn đièu kiện chia hết ko
hãy nêu ra cách giải cụ thể cho câu sau 3a-11 chia hết cho a+2 tìm a
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
b) (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
Bài 2*:Phân tích đa thức thành nhân tử
a) (a-b)(a+2b)-(b-a)(2a-b)-(a-b)(a+3b)
b) 5xy3-2xy2-15y2+6z
c) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
d) ab3c2-a2b2c2+ab2c3-a2bc
e) x2(y-z)+y2(z-x)+z2(x-y)
f) x2-6xy+9y2+4x-12y
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)
b) a(a+2b)3-b(2a+b)3
c) a3(c-b2)+b3(a-c2)+c3(b-a2)+abc(abc-1)
Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)
\(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)
\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)
\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)
\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)
\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)
\(=\left(a-b\right)^3\left(a+b\right)\)
\(a^3\left(c-b^2\right)+b^3\left(a-c^2\right)+c^3\left(b-a^2\right)+abc\left(abc-1\right)\)
\(=a^3\left(c-b^2\right)+ab^3-b^3c^2+bc^3-c^3a^2+a^2b^2c^2-abc\)
\(=a^3\left(c-b^2\right)-a^2c^2\left(c-b^2\right)-ab\left(c-b^2\right)+bc^2\left(c-b^2\right)\)
\(=\left(c-b^2\right)\left(a^3-a^2c^2-ab+bc^2\right)\)
\(=\left(c-b^2\right)\left[a^2\left(a-c^2\right)-b\left(a-c^2\right)\right]\)
\(=\left(c-b^2\right)\left(a-c^2\right)\left(a^2-b\right)\)
phân tích đa thức thành nhân tử:
a)a(b^2+c^2+bc)+b(a^2+c^2+ac)+c(a^2+b^2+ab)
b) (a+b+c)(ab+ba+ca)+abc)
c) a(a+2b)^3-b(2a+b)^3
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Phân tích các đa thức sau thành nhân tử:
a, a(b^2+c^2+bc)+b(c^2+a^2+ca)+c(a^2+b^2+ab)
b, (a+b+c)(ab+bc+ca)-abc
c, c(a+2b)^3-b(2a+b)^3
Giúp mk vs mk đag gấp !!
\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)
\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)
\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Phân tích đa thức thành nhân tử:
a) a(b2+c2+bc)+b(c2+a2+ca)+c(a2+b2+ab)
b) (a+b+c)(ab+bc+ca)-abc
c) c(a+2b)3-b(2a+b)3
Phân tích đa thức thành nhân tử
a(b2 + c2 +bc ) + b(c2 +a2 + ac ) + c( a2 + b2 +ab )
(a + b + c ) (ab + bc + ac ) - abc
a ( a+ 2b )3 - b (2a + b )3
Phân tích đa thức thành nhân tử
A) 5a^2-5ax-7a+7x
B) a^3+a^2b-a^2c-abc
C) x^2-(a+b).x+ab
D) a^3+b^3+a^2c+b^2c-abc
a) \(5a^2-5ax-7a+7x\)
\(=5a\left(a-x\right)-7\left(a-x\right)\)
\(=\left(5a-7\right)\left(a-x\right)\)
c) \(x^2-\left(a+b\right).x+ab\)
\(=x^2-ax-bx+ab\)
\(=x\left(x-a\right)-b\left(x-a\right)\)
\(=\left(x-b\right)\left(x-a\right)\)
a,\(5a^2-5ax-7a+7x=5a\left(a+x\right)-7\left(a+x\right)=\left(a+x\right)\left(5a-7\right)\)
Phân tích đa thức thành nhân tử
a) a(a+2b)^3-b(b+2a)^3
b)(a+b+c)(ab+bc+ca)-abc
Mấy bạn giúp mình nha mình sắp nộp bài rồi