Chứng minh rằng
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 ( a>b )
2, Cho abc chia hết cho 27. Chứng minh rằng bca chia hết cho 27
GIÚP EM VỚI CÁC ANH CHỊ ƠII
Chứng minh rằng
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 với a > b
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)
Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)
a)ab+ba
=a.10+b.1+b.10+a.1
=a.10+a.1+b.10+b.1
=a.(10+1)+b.(10.1)
=a.11+b.11
=11.(a+b)⋮11(vì 11⋮11)
b)ab - ba
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b)
Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)
CMR
a, ab + ba chia hết cho 11
b, ab - ba chia hết cho 9 (a > b)
c, cho số abc chia hết cho 27 . Chứng minh rằng số bca chia hết cho 27
a, Ta có:
\(\overline{ab}+\overline{ba}=10a+b+10b+a=11\left(a+b\right)\)
=> ab + ba chia hết cho 11(đpcm)
b, Ta có:
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)
=> ab - ba chia hết cho 9 (a > b)(đpcm)
Chúc bạn học tốt!!!
c) Câu hỏi của Mai Trung Kiên - Toán lớp 6 - Học toán với OnlineMath
tham khảo nhé bạn
\(\overline{ab}+\overline{ba}=10a+b+10b+a=11.a+11.b=11\left(a+b\right)⋮11\rightarrowđpcm\)\(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\rightarrowđpcm\)
\(\overline{abc}⋮27\Rightarrow\overline{abc}⋮3^3\Rightarrow\overline{abc}⋮3\)
\(\Rightarrow a+b+c⋮3\Rightarrow b+c+a⋮3\)
\(\Rightarrow\overline{bca}⋮3\rightarrowđpcm\)
1.Cho số abc chia hết cho 27.chứng minh bca chia hết cho 27
2,Chứng minh rằng :
a) AB+BA chia hết cho 11
b) AB-BA chia hết cho 9 /với A>B/
tối thứ 5 đi học
Bài 1 :
abc chia hết cho 27
\(\Rightarrow\)100a + 10b + c chia hết cho 27
\(\Rightarrow\)10(100a + 10b + c) chia hết cho 27
\(\Rightarrow\)1000a + 100b + 10c chia hết cho 27
\(\Rightarrow\)999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
Bài 2 :
a) ab + ba = 10a + b + 10b + a = (10a + a) + (10b + b) = 11a + 11b = 11(a + b) chia hết cho 11
b)Ta thấy ab và ba có tổng các chữ số như nhau nên có cùng số dư khi chia cho 9, do đó hiệu của chúng phải chia hết cho 9
abc chia hết cho 27
=100a+10b+10c chia hết cho 27
=10(100a+10b+c) chia hết cho 27
=1000a+100b+10c chia hết cho 27
=999a+(100b+10c+a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b+10c+a=bca chia hết cho 27
Chứng Minh Rằng :
a, ab - ba chia hết cho 9
b, abc - bca chia hết cho 9
c, 10^9 + 10^8 + 10^7 chia hết cho 555
d,81^7 - 27^9 - 9^13 chia hết cho 45
Giup mk với nha. Thanks
a) Ta có : ab - ba
=> a . 10 + b - b . 10 + a
=> ( a . 10 ) - a + ( 10 . b ) - b
=> 9. a + 9 . b
=> 9 . ( a + b ) chia hết cho 9 ( đpcm)
đpcm là điều phải chứng minh nha bạn
Câu b ban làm tương nha
Chúc bạn học giỏi
Chứng minh rằng:
d) abc chia hết cho 21 <=> a-2b+4c chia hết cho 21
đ) ab + ba chia hết cho 11
g) ab - ba chia hết cho 9 ( a>b )
k) cho abc chia hết cho 27 chứng minh rằng bca chia hết cho 27
ta có abc = 100a+10b+c
vì ưcln (4 , 21) = 1 nên 100a + 10b + c chia hết cho 21
<=>4 ( 100a +10b +c chia hết cho 21
<=> 400a +40b +4c chia hết cho 21
,<=>(339a +42b)+(a -2b+4c) chia hết cho 21
<=>21(19a+2b)+(a-2b+4c) chia hết cho 21
<=>(a-2b+4c) chia hết cho21
bạn xem mình làm có đúng không nhé
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
b, B = 102010 + 14
Xét tổng các chữ có trong B là : 1 + 0 x 2010 + 4 = 6 ⋮ 3 ⇒ B ⋮ 3
B = 102010 + 14 = \(\overline{..0}\) + 4 = \(\overline{..4}\) ⋮ 2 vậy B ⋮ 2
Chứng minh rằng:
a) a b ¯ + b a ¯ chia hết cho 11.
b) a b ¯ - b a ¯ chia hết cho 9 với a > b.
a)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
b)ab-ba⋮9
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b-10b+a
= 9a - 9b
Ta thấy: 9a⋮9 ; 9b⋮9
=>ab+ba⋮9 (ĐPCM)
Chứng minh rằng:
a, a b + b a chia hết cho 11
b, a b - b a chia hết cho 9 với a > b
a, a b + b a = (10a+b)+(10b+a) = 11a+11b = 11.(a+b) ⋮ 11
b, a b - b a = (10a+b) - (10b+a) = 9a - 9b = 9(a - b) ⋮ 9 (a>b)
chứng tỏ rằng:
a) ab+ba chia hết cho 11;
b,abc-bca chia hết cho 9
a) Ta có: ab=a.10+b
ba=10b+a
ab=ba=10a+b+10b+a=11a+11b=11(a+b)
=> ab+ba chia hết cho 11
a, ta có :ab=a.10+b
ba=b.10+a
ab=ba=10.a+b+10.b+a=11a+11b=11.(a+b)
=>ab+ba chia het cho 11
abc - bca
= a.100 + b.10 + c - b.100 - c.10 - a
= 99.a - 99.b - 9.c \(⋮\) 9
vậy_