Chứng minh rằng : a×b lẻ thì a và b đều lẻ
Cho đa Thức P(x) có các hệ số đều là số nguyên và a,b,c,d là bốn số nguyên lẻ phân biệt thỏa mãn P(a)=P(d)=-1,P(b)=P(c)=3 .Biết rằng a>b>c chứng minh rằng a,b,c,d là bốn số nguyên lẻ liên tiếp (theo 1 thứ tự nào đó )
Sử dụng quy tắc đa thức: \(P\left(a\right)-P\left(b\right)\) chia hết \(a-b\) cho đa thức hệ số nguyên
Do a;b;c;d lẻ nên hiệu của chúng đều chẵn
\(P\left(c\right)-P\left(a\right)=4\Rightarrow4⋮c-a\Rightarrow\left[{}\begin{matrix}c-a=-2\\c-a=-4\end{matrix}\right.\)
Tương tự ta có \(\left[{}\begin{matrix}b-a=-2\\b-a=-4\end{matrix}\right.\)
Mà \(a>b>c\) \(\Rightarrow b-a>c-a\Rightarrow\left[{}\begin{matrix}b-a=-2\\c-a=-4\end{matrix}\right.\)
\(\Rightarrow a;b;c\) là 3 số nguyên lẻ liên tiếp
Lại có \(P\left(b\right)-P\left(d\right)=4⋮b-d\Rightarrow b-d=\left\{-4;-2;2;4\right\}\)
Tương tự: \(c-d=\left\{-4;-2;2;4\right\}\) (1)
Do đã chứng minh được a; b và c là 2 số lẻ liên tiếp \(\Rightarrow c=b-2\) ; \(c=a-4\) (2)
- Nếu \(b-d=-4\Rightarrow c-d=b-2-d=-4-2=-6\) không thỏa mãn (1) (loại)
- Nếu \(b-d=-2\Rightarrow c-d=b-d-2=-4\) \(\Rightarrow c=d-4\)
\(\Rightarrow d=a\) theo (2) trái giả thiết a;b;c;d phân biệt (loại)
- Nếu \(b-d=2\Rightarrow c-d=b-d-2=0\Rightarrow c=d\) trái giả thiết c;d phân biệt (loại)
- Nếu \(b-d=4\Rightarrow c-d=b-d-2=2\)
\(\Rightarrow d\) là số lẻ liền trước của c
Vậy a;b;c;d là bốn số nguyên lẻ liên tiếp theo thứ tự \(a>b>c>d\)
Bài 1:
a) Chứng minh rằng số chính phương lẻ thì chia 8 dư 1
b) Chứng tỏ rằng nếu 2n + 1 và 3n + 1 là các số chính phương lẻ thì n chia hết cho 40 ( n thuộc N*)
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Chứng minh nếu a và b là các số tự nhiên với a.b lẻ thì a và b là số tự nhiên lẻ "
goi a=2k+1
b=2q+1
ta co a.b=(2k+1)(2q+1)
= 2q(2k+1)+2k+1 là số lẻ
Giả sử a, b là các số nguyên dương lẻ. Chứng minh rằng tồn tại các số nguyên s và t sao cho a=bs+t, trong đó t lẻ và |t|<b
a)Chứng minh rằng tích số lẻ là 1 số lẻ
b) Chứng minh rằng tổng 2 số lẻ là 1 số chẵn
giúp mình với!
Gọi 2 số lẻ là 2k+1 và 2h+1
Tích chúng là:
\(\left(2k+1\right)\left(2h+1\right)=4kh+2k+2h+1=2.\left(2kh+k+h\right)+1\) là 1 số lẻ => đpcm
Chứng minh rằng:
a)Các số chẵn đều chia hết cho 2?
b)Các số lẻ đều không chia hết cho 2?
a) Các số chẵn có tận cùng là:0;2;4;6;8
Mà các số này đều chia hết cho 2
Vậy các số chẵn đều chia hết cho 2
b) Các số lẻ có tận cùng là: 1;3;5;7;9
Mà các số này đều chia 2 dư 1
Vậy các số lẻ không chia hết cho 2
CHỨNG MINH RẰNG a, b E Z thì (a mũ 2 -1)+(b mũ 2 trừ 1) chia hết cho 8 với a, b lẻ
Chứng minh rằng nếu a,b,c lẻ thì (a,b,c)=\(\left(\dfrac{a+b}{2},\dfrac{b+c}{2},\dfrac{c+a}{2}\right)\)
Chứng minh rằng:
a) Hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8