x+1/3003+x+2/3002+x+3/3001=1
Giải giúp mình với 1 câu cũng được(chi tiết)
\(\frac{x+4}{3000}+\frac{x+3}{3001}=\frac{x+2}{3002}+\frac{x+1}{3003}\)
\(\left(x+3\right).\left(x+\frac{1}{2}\right)<0\)
x+4/3000 + x+3/3001 = x+2/3002 + x+1/3003
=> (x+4/3000 + x+3/3001) - (x+2/3002 + x+1/3003) = 0
=> (x+4/3000 + 1 + x+3/3001 + 1) - (x+2/3002 + 1 + x+1/3003 + 1) = 0
=> (x+3004/3000 + x+3004/3001) - (x+3004/3002 + x+3004/3003) = 0
=> (x+3004) x (1/3000 + 1/3001) - (x+3004) x (1/3002 + 1/3003) = 0
=> (x+3004) x [(1/3000 + 1/3001) - [(1/3002 + 1/3003)] = 0
=> x+3004 = 0 hoặc (1/3000 + 1/3001) - (1/3002 + 1/3003) = 0
Mà 1/3000 + 1/3001 > 1/3002 + 1/3003 => (1/3000 + 1/3001) - (1/3002 + 1/3003) khác 0
=> x+3004 = 0
=> x = 0-3004 = -3004
Vậy x = -3004
(x + 3).(x + 1/2) < 0
=> trong 2 số x + 3 và x + 1/2 có 1 số < 0 và 1 số > 0
Mà x + 3 > x + 1/2
=> x + 3 > 0 và x + 1/2 < 0
=> x > -3 và x < -1/2
=> x > -6/2 và x < -1/2
=> x thuộc { -5/2 ; -4/2 ;-3/2}
Vậy x thuộc { -5/2 ; -4/2 ; -3/2}
Tính:
1-2+3-4+...+3001-3002
Đặt A=1-2+3-4+............+3001-3002
A=(1-2)+(3-4)+..............+(3001-3002)
A=(-1)+(-1)+................+(-1){Có 1501 số(-1)}
A=(-1).1501
A=-1501
4000/3000+3999/2999.4001/3001+3989/2989.4002/3002
Tìm x biết:
1/3+1/6+1/18+.......+2/x(x+1)=1998/3002
A=4000/3000+3999/2999.4001/3001+3989/2989.4002/3002+...+0
So sánh
A= 2219*2221*2226-2218*2223*2225
B= 3004*2999*2997-3003*2996*3001
\(A=2219.2221.2226-2218.2223.2225\)
\(A=2219.(2223-2).2226-2218.2223.2225\)
\(A=2219.2223.2226-2.2219.2226-2218.2223.2225\)
\(A=2223.(2219.2216-2218.2225)-2.2219.2216\)
\(A=2223.\left\{(2218+1).(2215+1)-2218.2225\right\}-2.2219.2216\)
\(A=2223.(2218+2225+1)-2219.2226-2219.2226\)
\(A=2223.2219+2223.2225-2219.2226-2219.2226\)
\(A=(2223.2219-2219.2226)+2223.2225-2219.2225-2219\)
\(A=2219.(-3)+2225.4-2219\)
\(A=2219.(-4)+2225.4\)
\(A=4.(2225-2219)\)
\(A=4.6\)
\(A=24\)
\(B=3004.2999.2997-3003.2996.3001\)
\(B=3004.2999.(3001-4)-3003.2996.3001\)
\(B=(3003+1).2999.3001-3004.2999.4-3003.2996.3001\)
\(B=3003.(2996+3).3001+2999.3001-3004.2999.4-3003.2996.3001\)
\(B=3003.2996.3001+3.3003.3001-3.3004.2999+2999.3001-3004.2999-3003.2996.3001\)
\(B=3.(3003.3001-3004.2999)+2999.(3001-3004)\)
\(B=3.\left\{\left(3004-1\right).\left(2999+2\right)-3004.2999\right\}-3.2999\)
\(B=3.\left(3004.2999+2.3004-2999-2-3004.2999\right)-3.2999\)
\(B=3.(2.3003-2999)-3.2999\)
\(B=6.3003-6.2999\)
\(B=6.(3003-2999)\)
\(B=6.4\)
\(B=24\)
Mà \(A=24\) , \(B=24\)
\(\Rightarrow A=B\)
A=2219*(2223-2)*2226 - 2218*2223*2225
=2219*2223*2226 - 2*2219*2226 - 2218*2223*2225
=2223*(2219*2226 - 2218*2225) - 2*2219*2226
=2223*[(2218+1)*(2225+1) - 2218*2225] - 2*2219*2226
=2223*(2218+2215+1) - 2*2219*2226
=2223*2219+2223*2225 - 2219*2226 - 2219*2226
=(2223*2219 - 2219*2226) +2223*2225 - 2219*2225 - 2219
=2219*(-3) + 2225*4 - 2219
=2219*(-4) + 2225*4 = 4*(2225-2219) = 4*6 = 24
B=3004*2999*(3001-4) - 3003*2996*3001
=(3003+1)*2999*3001 - 3004*2999*4 - 3003*2996*3001
=3003*(2996+3)*3001 +2999*3001 - 3004*2999*4 - 3003*2996*3001
=3003*2996*3001+3*3003*3001 +2999*3001 - 3*3004*2999 - 3004*2999 - 3003*2996*3001
=3*(3003*3001 - 3004*2999) + 2999*(3001-3004)
=3*[(3004-1)*(2999+2) - 3004*2999] - 3*2999
=3*(3004*2999+2*3004 - 2999 - 2 - 3004*2999) - 3*2999
=3*(2*3003-2999) - 3*2999
=6*3003 - 6*2999 = 6*(3003-2999) = 6*4 = 24
===> A=B (=24)
Tìm số tự nhiên x,y thỏa mãn
(x-1) (y+2)=3
chứng minh rằng: số aaaaaa là bội của 3003
y ở đâu vậy?
aaaaaa = a . 111111 = a . 3003 . 37 chia hết cho 3003
=> aaaaaa chia hết cho 3003 (đpcm)
so sánh A và B
A=2219*2221*2226-2218*2223*2225
B=3004*2999*2997-3003*2996*3001
tìm x:
a) (22)x = 25
b) (3x)2 = 81
c) 8x +1 = 23003
d) 8x+1 = 41002
\(a)\left(2^2\right)^x=2^5\)
\(\Leftrightarrow2^{2x}=2^5\)
\(\Leftrightarrow2x=5\)
\(\Leftrightarrow x=2,5\)
\(b)\left(3^x\right)^2=81\)
\(\Leftrightarrow3^{2x}=3^4\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
\(c)8^{x+1}=2^{3003}\)
\(\Leftrightarrow\left(2^3\right)^{x+1}=2^{3003}\)
\(\Leftrightarrow2^{3\left(x+1\right)}=2^{3003}\)
\(\Leftrightarrow3\left(x+1\right)=3003\)
\(\Leftrightarrow x+1=1001\)
\(\Leftrightarrow x=1000\)
\(d)8^{x+1}=4^{1002}\)
\(\Leftrightarrow\left(2^3\right)^{x+1}=\left(2^2\right)^{1002}\)
\(\Leftrightarrow2^{3\left(x+1\right)}=2^{2004}\)
\(\Leftrightarrow3\left(x+1\right)=2004\)
\(\Leftrightarrow x+1=668\)
\(\Leftrightarrow x=667\)