S=\(1\times3+3\times5+5\times7+...+99\times101\)
\(\frac{7}{1\times3}+\frac{7}{3\times5}+\frac{7}{5\times7}+......+\frac{7}{99\times101}\)
=>A=\(\frac{7}{2}\)(\(\frac{1}{1}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+...+\(\frac{1}{99}\)-\(\frac{1}{101}\))
=>A=\(\frac{7}{2}\)(1-\(\frac{1}{101}\))
=>A=\(\frac{350}{101}\)
7/2 ( \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{99}-\frac{1}{101}\))
7/2 ( 1 - 1/101 )
7/2 x 100/101
=350/101
= 7 phần 1 + 7 phần 3 - 7 phần 3 + 7 phần 5 - 7 phần 5 + 7 phần 7 + ...... + 7 phần 99 - 7 pjaafn 101
= 7 - 7 phần 101
= tự tính kết quả nhé , mà bạn viết ra giấy rồi viết vào vở cho dễ nhìn nhé
Các bạn giúp mk, mk cần gấp!
\(\frac{4}{1\times3}+\frac{4}{3\times5}+\frac{4}{5\times7}+......+\frac{4}{99\times101}\)
\(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2.\left(1-\frac{1}{101}\right)\)
\(=2.\frac{100}{101}=\frac{200}{101}\)
Đặt \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+..+\frac{4}{99.101}\)
\(A=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(A=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=2.\left(1-\frac{1}{101}\right)\)
\(A=\frac{2.100}{101}=\frac{200}{101}\)
Ủng hộ mk nha !!! ^_^
Ta gọi tổng trên là A
Ta có: A = 4/1x3+4/3x5 + 4/5x7+...+4/99x101
=>A x 2/4 = 2/1x3+2/3x5+2/5x7+...+2/99x101
=1-1/2+1/2-1/3+1/3-1/4+....+1/99+1/101
=1-1/101=100/101
thục hiện phép tính
A = \(\dfrac{3}{1\times5}+\dfrac{3}{5\times10}+....+\dfrac{3}{100\times105}\)
B=\(\dfrac{5}{1\times3\times5}+\dfrac{5}{3\times5\times7}+...+\dfrac{5}{99\times101\times103}\)
Có: A=\(\dfrac{3}{1.5}+\dfrac{3}{5.10}+...+\dfrac{3}{100.105}\)
=> A=\(3.\dfrac{5}{5}\left(\dfrac{1}{1.5}+\dfrac{1}{5.10}+...+\dfrac{1}{100.105}\right)\)
=> A= \(3.\dfrac{1}{5}\left(\dfrac{5}{1.5}+\dfrac{5}{5.10}+...+\dfrac{5}{100.105}\right)\)
=> A=\(\dfrac{3}{5}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{105}\right)\)
=> A= \(\dfrac{3}{5}\left(1-\dfrac{1}{105}\right)\)=\(\dfrac{3}{5}.\dfrac{104}{105}=\dfrac{312}{525}\)
thực hiện phép tính
A=\(\frac{3}{1\times5}+\frac{3}{5\times10}+....+\frac{3}{100\times105}\)
B=
\(\dfrac{5}{1\times3\times5}+\dfrac{5}{3\times5\times7}+...+\dfrac{5}{99\times101\times103}\)
Ta có:
\(A=\frac{3}{1\cdot5}+\frac{3}{5\cdot10}+...+\frac{3}{100\cdot105}\)
\(=\frac{3}{5}\cdot\left(\frac{5}{1\cdot5}+\frac{5}{5\cdot10}+...+\frac{5}{100\cdot105}\right)\)
\(=\frac{3}{5}\cdot\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{105}\right)\)
\(=\frac{3}{5}\left(1-\frac{1}{105}\right)=\frac{3}{5}\cdot\frac{104}{105}=\frac{312}{525}\)
CHỨNG TỎ:
\(\frac{2}{1\times3}\)+\(\frac{2}{3\times5}\)+\(\frac{2}{5\times7}\)+...+\(\frac{2}{99\times101}\)<1
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(=2.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1-\frac{1}{100}\Rightarrowđpcm\)
Ta có :
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}< 1\)\(\left(đpcm\right)\)
=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101=1-1/101=100/101<1
\(1\times3+3\times5+5\times7+...+21\times23\)23.tìm s
Gọi A = 1.3+3.5+5.7+...+21.23
=> A = 1.(1+2)+3.(3+2)+5.(5+2)+...+21.(21+2)
=> A = 12+1.2+32+2.3+52+2.5+...+212+2.21
=> A = 12+32+52+...+212+(1.2+3.2+5.2+...+2.21)
Gọi B = 12+32+52+...+212
=> B = (21.22.23)/3
Gọi C = 1.2+2.3+5.2+...+2.21
=> C = 2(1+3+5+...+21)
=> C = 2{(21+1).[(21-1):2+1]}/2
=> C = 22x11=242
Vậy A = (21.22.23)/3+242
\(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+......+\frac{2}{99\times101}\)
Giúp mình với gấp lắm !!!
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
\(=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\right)\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{101}{303}-\frac{3}{303}=\frac{98}{303}\)
Đặt A = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Leftrightarrow A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.100}\)
\(=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}-\frac{1}{7}+\frac{1}{9}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
Ta có:
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}\)
\(=\frac{98}{303}\)
a)\(\frac{1\times3\times2\times4\times3\times5\times4\times6\times5\times7}{2\times2\times3\times3\times4\times4\times5\times5\times6\times6}=?\)
b)Thay chữ a, b bằng chữ số thích hợp:
1) ab x aba = abab 2) 99 x ab = aabb
c) 3 x a + 4 : b - 5/12 với a = 7/6, b = 6/5
dau . la dau x
a/ 1.3.2.4.3.5.4.6.5.7/2.2.3.3.4.4.5.5.6.6=1.7/2.6=7/12
b/ ab.aba=abab
aba=abab:ab
aba=101
=>a=1 b=0
aabb : ab = 99 hay ab x 99 = aabb hay ab x100 – ab = aabb
Ta có phép tính
__ ab00
___ab___
aabb
b=0 hoặc b=5
Nếu b=0 thì a000 – a0 = aa00 (sai)
Nếu b=5 thì
__ a500
__a5___
aa55
a=4
c) thay a=7/6 b=6/5 thi 3 x a + 4 : b - 5/12=3.7/6+4.6/5-5/12=7/2+24/5-5/12=210/60+288/60-25/60=473/60
**** nha
\(\frac{1.3.2.4.3.5.4.6.5.7}{2.2.3.3.4.4.5.5.6.6}=\frac{\left(2.3.4.5.6\right).\left(3.4.5.7\right)}{\left(2.3.4.5.6\right).\left(2.3.4.5.6\right)}=\frac{7}{12}\)
chỉ trả lời được câu a thôi: phần a bằng 7/12