Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng thanh anh
Xem chi tiết
Lã Quốc Trung
26 tháng 7 2017 lúc 10:54

=>A=\(\frac{7}{2}\)(\(\frac{1}{1}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+...+\(\frac{1}{99}\)-\(\frac{1}{101}\))

=>A=\(\frac{7}{2}\)(1-\(\frac{1}{101}\))

=>A=\(\frac{350}{101}\)

nguyển văn hải
26 tháng 7 2017 lúc 10:53

7/2 ( \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{99}-\frac{1}{101}\))

7/2 ( 1 - 1/101 ) 

7/2 x 100/101

=350/101 

Trần Thị Thùy Linh
26 tháng 7 2017 lúc 10:55

= 7 phần 1 + 7 phần 3 - 7 phần 3 + 7 phần 5 - 7 phần 5 + 7 phần 7 + ...... + 7 phần 99 - 7 pjaafn 101

= 7 - 7 phần 101 

 = tự tính kết quả nhé , mà bạn viết ra giấy rồi viết vào vở cho dễ nhìn nhé

sonoda Umi
Xem chi tiết
soyeon_Tiểu bàng giải
24 tháng 7 2016 lúc 21:53

\(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)

\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=2.\left(1-\frac{1}{101}\right)\)

\(=2.\frac{100}{101}=\frac{200}{101}\)

van anh ta
24 tháng 7 2016 lúc 21:52

Đặt \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+..+\frac{4}{99.101}\)

\(A=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(A=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=2.\left(1-\frac{1}{101}\right)\)

\(A=\frac{2.100}{101}=\frac{200}{101}\)

Ủng hộ mk nha !!! ^_^

Nguyễn Hà Anh
24 tháng 7 2016 lúc 22:11

Ta gọi tổng trên là A

Ta có: A = 4/1x3+4/3x5 + 4/5x7+...+4/99x101

=>A x 2/4 = 2/1x3+2/3x5+2/5x7+...+2/99x101

               =1-1/2+1/2-1/3+1/3-1/4+....+1/99+1/101

               =1-1/101=100/101

trần khởi my
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 9 2018 lúc 19:51

Có: A=\(\dfrac{3}{1.5}+\dfrac{3}{5.10}+...+\dfrac{3}{100.105}\)

=> A=\(3.\dfrac{5}{5}\left(\dfrac{1}{1.5}+\dfrac{1}{5.10}+...+\dfrac{1}{100.105}\right)\)

=> A= \(3.\dfrac{1}{5}\left(\dfrac{5}{1.5}+\dfrac{5}{5.10}+...+\dfrac{5}{100.105}\right)\)

=> A=\(\dfrac{3}{5}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{105}\right)\)

=> A= \(\dfrac{3}{5}\left(1-\dfrac{1}{105}\right)\)=\(\dfrac{3}{5}.\dfrac{104}{105}=\dfrac{312}{525}\)

khoi my
Xem chi tiết
Full Moon
23 tháng 9 2018 lúc 15:20

Ta có:

\(A=\frac{3}{1\cdot5}+\frac{3}{5\cdot10}+...+\frac{3}{100\cdot105}\)

\(=\frac{3}{5}\cdot\left(\frac{5}{1\cdot5}+\frac{5}{5\cdot10}+...+\frac{5}{100\cdot105}\right)\)

\(=\frac{3}{5}\cdot\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{105}\right)\)

\(=\frac{3}{5}\left(1-\frac{1}{105}\right)=\frac{3}{5}\cdot\frac{104}{105}=\frac{312}{525}\)

Nguyen Ngoc Tram
Xem chi tiết
QuocDat
25 tháng 4 2017 lúc 20:15

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

\(=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(=2.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=1-\frac{1}{100}\Rightarrowđpcm\)

Thanh Tùng DZ
25 tháng 4 2017 lúc 20:15

Ta có :

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}< 1\)\(\left(đpcm\right)\)

Nguyễn Thành Nguyên
25 tháng 4 2017 lúc 20:17

=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101=1-1/101=100/101<1

dinh thuy linh
Xem chi tiết
Phạm Tuấn Đạt
8 tháng 3 2018 lúc 21:12

Gọi A = 1.3+3.5+5.7+...+21.23

=> A = 1.(1+2)+3.(3+2)+5.(5+2)+...+21.(21+2)

=> A = 12+1.2+32+2.3+52+2.5+...+212+2.21

=> A = 12+32+52+...+212+(1.2+3.2+5.2+...+2.21)

Gọi B = 12+32+52+...+212

=> B = (21.22.23)/3

Gọi C = 1.2+2.3+5.2+...+2.21

=> C = 2(1+3+5+...+21)

=> C = 2{(21+1).[(21-1):2+1]}/2

=> C = 22x11=242

Vậy A = (21.22.23)/3+242

Nguyễn Bích Ngọc
Xem chi tiết
Edogawa Conan
11 tháng 2 2022 lúc 12:26

\(=\dfrac{4}{7}\)

Ngọc Nguyễn
Xem chi tiết
nguyen hoang
10 tháng 8 2017 lúc 20:05

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)

\(=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\right)\)

\(=\frac{1}{3}-\frac{1}{101}=\frac{101}{303}-\frac{3}{303}=\frac{98}{303}\)

tth_new
10 tháng 8 2017 lúc 20:05

Đặt A = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(\Leftrightarrow A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.100}\)

\(=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}-\frac{1}{7}+\frac{1}{9}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

Trần Phúc
10 tháng 8 2017 lúc 20:06

Ta có:

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{3}-\frac{1}{101}\)

\(=\frac{98}{303}\)

Cô Nàng Xinh Xắn
Xem chi tiết
Đỗ Văn Hoài Tuân
15 tháng 5 2015 lúc 21:16

dau . la dau x

a/ 1.3.2.4.3.5.4.6.5.7/2.2.3.3.4.4.5.5.6.6=1.7/2.6=7/12

b/ ab.aba=abab

        aba=abab:ab

        aba=101

=>a=1     b=0

aabb : ab = 99 hay ab x 99 = aabb hay  ab x100 – ab = aabb

Ta có phép tính

                  __  ab00

                      ___ab___

                        aabb

 b=0 hoặc b=5

Nếu b=0 thì    a000 – a0 = aa00  (sai)

Nếu b=5 thì  

                   __  a500

                        __a5___

                        aa55

            a=4

c) thay a=7/6 b=6/5 thi 3 x a + 4 : b - 5/12=3.7/6+4.6/5-5/12=7/2+24/5-5/12=210/60+288/60-25/60=473/60

**** nha

✓ ℍɠŞ_ŦƦùM $₦G ✓
15 tháng 5 2015 lúc 21:17

\(\frac{1.3.2.4.3.5.4.6.5.7}{2.2.3.3.4.4.5.5.6.6}=\frac{\left(2.3.4.5.6\right).\left(3.4.5.7\right)}{\left(2.3.4.5.6\right).\left(2.3.4.5.6\right)}=\frac{7}{12}\)

Đặng Tiến Dũng
11 tháng 5 2016 lúc 19:09

 chỉ trả lời được câu a thôi: phần a bằng 7/12