Tìm số dư của a khi a chia cho 7 thì a bé hơn 2 + 2 + 2 mũ 3 +...+ 2018
cho A = 2 mũ 0 + 2 mũ 1 + 2 mũ 2 +....+ 2 mũ 2018
a) so sánh A với 2 mũ 2019
b) tìm số tự nhiên x biết A+1 = 2 mũ x +1
c) tìm số tự nhiên x biết A+1 = 2.4 mũ x
d) chứng minh rằng A chia hết cho 7
e) tính số dư khi chia A cho 3 và khi chia A cho 15
a)xét 2A =2+2^2+2^3+.....+2^2019
-A=1+2+2^2+...+2^2018
A=(2^2019)-1 <2^2019
b)theo câu a ta có A+1=2^2019-1+1=2^2019=2^(x+1)
2019=x+1 =>x=2018
c)theo câu b ta có A+1=2^2019=2.4^x=2^(1+2x)
=>2019=1+2x
tự làm nốt
1.Cho E=5+5 mũ 2+5 mũ 3+....+5 mũ 100. Tìm số dư khi chia E cho 6
2. Chứng tỏ rằng với mọi số tự nhiên n thì n(n+2)(n+7): 3( chia hết cho 3)
3. Tìm số nguyên tố nhỏ hơn 200 , biết rằng khi chia số đó cho 60 thì số dư là hợp số
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13
Cho A=1+2+2 mũ 2+2 mũ 3+...+2 mũ 2011
a)chứng minh rằng A chia hết cho 3
b)tìm số dư khi chia A cho 7
Bài 5: (0,5 điểm) Cho biểu thức A=2+2 mũ 2+ 2 mũ 3 +............+ 2 mũ 2023+ 2 mũ 2024 a) Thu gọn A b) Tìm số tự nhiên n biết 2.A + 4 = 2n c) Chứng tỏ A chia hết cho 3 d) Tìm số dư khi chia A cho 7
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
A= 2 mũ 3+2 mũ 5 + ... +2 mũ 51 tìm số dư khi chia cho 7
2+2 mũ 3 + 2 mũ 5 +2 mũ 7 + 2 mũ 9 +......+ 2 mũ 2013
tìm số dư khi chia A cho 5
2+2^3 + 2^5 +2^7 + 2^9 +......+ 2^2013 chia 5 dư2
Tìm số dương N bé nhất (N>0) biết rằng khi chia cho 2 thì dư 1, chia cho 3 thì dư 2, chia cho 7 thì dư 6, chia cho 11 thì dư 10
A.421
B.435
C.461
D.471
E.481
Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11
Do N là số dương nhỏ nhất
Nên N + 1 thuộc BCNN(2,3,7,11)
Mà BCNN(2,3,7,11) = 2.3.7.11 = 462
Hay N+1 = 462
=> N = 461
Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11
Do N là số dương nhỏ nhất
Nên N + 1 thuộc BCNN(2,3,7,11)
Mà BCNN(2,3,7,11) = 2.3.7.11 = 462
Hay N+1 = 462
=> N = 461
a. Tìm số tự nhiên có 3 chữ số bé nhất mà khi chia số bé nhất cho 4 dư 5 ; chia 5 dư 4 ; chia 6 dư 5
b. tìm số tự nhiên bé hơn 400 mà khi chia số đó cho2;3;4;5;6 đều dư 1vaf khi chia chi 7 thì không dư
bài 1:CMR 1/2 mũ 2+1/3 mũ 2 +1/4 mũ 2+......+1/25 mũ 2<1
bài 2:Tìm số tự nhiên a biết a:7 dư 5,a:13 dư 4.Nếu đem a chia 9 thì dư là?
bài 3:HS K6 khi xếp hàng 11 thì vừa đủ biết số HS chưa đến 400HS.Tính số HS K6
các bn ơi giúp mik với ạ,mik đag gấp:((