\(\frac{\sqrt{x}-\sqrt{4y}}{\sqrt{x}+\sqrt{y}}+\frac{3x}{x+\sqrt{xy}}\)
trục căn thức
Trục căn thức ở mẫu :
f) \(\dfrac{2}{\sqrt{6}-\sqrt{5}}\)
l) \(\dfrac{3}{\sqrt{10}+\sqrt{7}}\)
m) \(\dfrac{1}{\sqrt{x}-\sqrt{y}}\) (\(x>0;y>0;x\ne y\))
f: \(\dfrac{2}{\sqrt{6}-\sqrt{5}}=2\sqrt{6}+2\sqrt{5}\)
l: \(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\sqrt{10}-\sqrt{7}\)
\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{Y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3+y}+\sqrt{xy^3}}\)
tìm điều kiện để bthuc xác định
rút gọn biểu thức
cho xy=6 xác định x,y để bthuc có GTNN
Cho biểu thức : \(A=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\).
a) Rút gọn A .
b) Cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\). Tính giá trị lớn nhất của A .
Đề : Trục căn thức ở mẫu
f) \(\dfrac{2}{\sqrt{6}-\sqrt{5}}\) l) \(\dfrac{3}{\sqrt{10}+\sqrt{7}}\) m) \(\dfrac{1}{\sqrt{x}-\sqrt{y}}\) ( x>0 ,y>0,\(x\ne y\) )
o) \(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}\) (\(a\ge0,b\ge0,a\ne b\))
P) \(\dfrac{P}{2\sqrt{P}-1}\) (\(P\ge0\) , \(P\ne\dfrac{1}{4}\))
f: \(\dfrac{2}{\sqrt{6}-\sqrt{5}}=2\sqrt{6}+2\sqrt{5}\)
l: \(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\sqrt{10}-\sqrt{7}\)
m: \(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\sqrt{18}-\frac{1}{3}\sqrt{72}-\sqrt{8}+\frac{2-3\sqrt{2}}{3-\sqrt{2}}\)
Trục căn thức ở mẫu
Ta có: \(\sqrt{18}-\frac{1}{3}\sqrt{72}-\sqrt{8}+\frac{2-3\sqrt{2}}{3-\sqrt{2}}\)
\(=3\sqrt{2}-\frac{6\sqrt{2}}{3}-2\sqrt{2}+\frac{\left(3+\sqrt{2}\right)\left(2-3\sqrt{2}\right)}{9-2}\)
\(=3\sqrt{2}-2\sqrt{2}-2\sqrt{2}-\sqrt{2}\)
\(=-2\sqrt{2}\)
TRục căn thức ở mẫu A =\(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}\)
\(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(2\sqrt{6}+1\right)}{23}\)
1.cho biểu thức \(P=\left(\frac{2x+\sqrt{x}}{x\sqrt{x}-1}-\frac{2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a, rút gọn biểu thức P
b,tìm các giá trị của x để biểu thức P có giá trị nguyên
2.. tìm các cặp số nguyên(x;y) thỏa mãn \(x^2+xy-3x-y-5=0\)
3..giải phương trình \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
Giải hệ:
\(\left\{{}\begin{matrix}x^2+y^2+xy=5\\27x^3+6y^2x=2+y^3+30x^2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\), \(\left\{{}\begin{matrix}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\\2\left(2x+\sqrt{y}\right)=\sqrt{2x+6}-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2y-3x-1=3x\sqrt{y}\left(\sqrt{1-x}-1\right)^3\\\sqrt{8x^2-3xy+4y^2}+\sqrt{xy}=4y\end{matrix}\right.\)
Cho các số a,b,c là các số k âm sao cho tổng hai số bất kì đều dương.CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+\frac{16\sqrt{ab+bc+ac}}{a+b+c}\ge8\)
Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)
cho x,y >0 thoả mãn hệ thức: \(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\).
hãy tính giá trị của biểu thức: \(E=\frac{2x+\sqrt{xy}+3y}{x+\sqrt{xy}-y}\)
\(x+\sqrt{xy}=3\sqrt{xy}+15y\Leftrightarrow x-2\sqrt{xy}+y=16y\Leftrightarrow\sqrt{x}=\sqrt{y}+4\sqrt{y}=5\sqrt{y}\Leftrightarrow x=25y\)
\(E=\frac{50y+5y+3y}{25y+5y-y}=\frac{58}{29}=2\)