1.Thuc hien pheo tinh :
a, 6xy (x^3 - 2/3xy+1/2y^2)
b, (5x-y^2) (2x^2-3xy+y^2)
bai 1: thuc hiem phep tinh.
a,(3x^3y-1/2x^2+1/5xy).6xy^3
b, 2/3x^2y.(3xy-x^2+y)
c, (xy-1).(xy+5)
d, (x^2y^2-1/2xy+2xy)x-2y
c) (xy-1).(xy+5)
= x2y2+5xy-xy-5
=x2y2+4xy-5
a) b) d) bạn có thể ghi rõ được ko
Thuc hien phep tinh
a, [ x2y2- 1/3xy+3y13xy+3y ] (x-3y)
b, (x^2+xy+y^2) (x-y)
c, (1/5x-1) (x^2-5x+2)
d, (x^2-2xy+y^2) (x-y)
d. ( x2 - 2xy + y2 ) ( x-y )
= ( x- y )2 ( x- y )
= ( x - y )3
b, (x^2+xy+y^2) (x-y)
= ( x+ y )2 ( x- y )
= ( x2 - y 2 ) ( x +y )
Thực hiện phép chia:
a. (-2x^5+3x^2-4x^3):2x^2
b .(x^3-2x^2y+3xy^2):(-1/2x)
c. (3x^2y^2+6x^2y^3-12xy^2):3xy
d. (4x^3-3x^2y+5xy^2):0,5x
e. (18x^3y^5-9x^2y^2+6xy^2):3xy^2
f. (x^4+2x^2y^2+y^4):(x^2+y^2)
sau bạn đăng tách ra cho mn cùng giúp nhé
a, \(\left(-2x^5+3x^2-4x^3\right):2x^2=-x^3+\frac{3}{2}-2x\)
b, \(\left(x^3-2x^2y+3xy^2\right):\left(-\frac{1}{2}x\right)=-\frac{x^2}{2}+xy-\frac{3y^2}{2}\)
c, \(\left(3x^2y^2+6x^3y^3-12xy^2\right):3xy=xy+2x^2y^2-4y\)
d, \(\left(4x^3-3x^2y+5xy^2\right):\frac{1}{2}x=2x^2-\frac{3xy}{2}+\frac{5y^2}{2}\)
e, \(\left(18x^3y^5-9x^2y^2+6xy^2\right):3xy^2=6x^2y^3-3x+2\)
f, \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)=x^2+y^2\)
a,(3+1)(x-1)
b,5x(3x-2)
c,3x^2y+6xy^2-9xy):3xy
d,(3x^4-6x^3+4x^2):2x^y
e,(8x^4y^3-4x^3y^2+x^2y^2):2x^2y^2
Thực hiện phép nhân sau
1)-xy(x^2 + xy - y^2)
2) -5x^2y(2y^2-xy)
3)(-2x^3 - 1/4y - 4y^2)8xy^2
4)(2x^3-3xy +12x).(-1/6xy)
`a, -xy(x^2+xy-y^2)`
`= -x^3y - x^2y^2 + xy^3`.
`b, 5x^2y(2y^2-xy)`
`= 10x^2y^3 - 5x^3y^2`.
`c, (-2x^3 - 1/4y - 4y^2).8xy^2`.
`= -16x^4y^2 - 2xy^3 - 32xy^4`.
`d, (2x^3 - 3xy + 12x)(-1/6xy)`
`= -2/3x^4y + 1/2x^2y^2 - 2x^2y`.
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
Phân tích đa thức sau thành nhân tử
9y^3-y
8y^3-2y(1-2y)^2
2x^3-8x^2+8x
2x^4-6x^3+6x^2-2x
x^3-6x^2y+9xy^2-x
5x^4-15x^3y+15x^2y^2-5xy^3-5x
3x^2+3xy-x-y
6xy-x^2-y^2+25
7m-7n-m^2+2mn-n^2
3xy-3xz+2xyz-xy^2-xz^2
a)\(9y^3-y\)
\(=y\left(9y^2-1\right)\)
\(=y\left(3y-1\right)\left(3y+1\right)\)
\(9y^3-y=y\left(9y^2-1\right)=y\left(3y+1\right)\left(3y-1\right)\)
\(8y^3-2y\left(1-2y\right)^2=2y\left[\left(2y\right)^2-\left(1-2y\right)^2\right]=2y\left(4y-1\right)\)
\(2x^3-8x^2+8x=2x\left(x^2-4x+4\right)=2x\left(x-2\right)^2\)
\(2x^4-6x^3+6x^2-2x=2x\left(x^3-3x^2+3x-1\right)=2x\left(x-1\right)^3\)\(x^3-8x^2+8x=x\left(x^2-8x+8\right)\)
\(5x^4-15x^3y+15x^2y^2-5xy^3-5x=5x\left(x^3-3x^2y+3xy^2-y^3-1\right)=5x\left[\left(x-y\right)^3-1\right]=5x\left(x-y-1\right)\left(x^2-2xy+y^2+x-y+1\right)\)
bai 1: thuc hiem phep tinh.
a,(3x^3y-1/2x^2+1/5xy).6xy^3
b, 2/3x^2y.(3xy-x^2+y)
c, (xy-1).(xy+5)
d, (x^2y^2-1/2xy+2xy)x-2y
a)\(\left(3x^{3y}-\frac{1}{2}x^2+\frac{1}{5}xy\right).6xy^3\)
\(=18x^{3y+1}y^3-3x^3y^3+\frac{6}{5}x^2y^4\)
\(=y^3.\left(18x^{3y+1}-3x^3+\frac{6}{5}x^2y\right)\)
b)\(\frac{2}{3}x^{2y}.\left(3xy-x^2+y\right)\)
\(=2x^{2y+1}y-\frac{2}{3}x^{2y+x}+\frac{2}{3}x^{2y}y\)
c)(xy-1)(xy+5)
=x2y2+5xy-xy-5
=x2y2+4xy-5
d)Mk ko hiểu sao hai lần mũ liền
bai 1: thuc hiem phep tinh
.a,(3x^3y-1/2x^2+1/5xy).6xy^3
b, 2/3x^2y.(3xy-x^2+y)
c, (xy-1).(xy+5)
d, (x^2y^2-1/2xy+2xy)x-2y
.a,(3x^3y - 1/2x^2 + 1/5xy) . 6xy^3
= 18x^4y^4 - 3x^3y^3 + 6/5x^2y^4
b, 2/3x^2y . (3xy - x^2 + y)
= 2x^3y^2 - 2/3x^4y^2 + 2/3x^2y^2
c, (xy - 1) . (xy + 5)
= x^2y^2 + 5xy - xy - 5
=x^2y^2 + 4xy - 5
d, (x^2y^2 - 1/2xy + 2xy)x - 2y
= x^3y^2 - 1/2x^2y + 2x^2y - 2y