Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn quỳnh nga
Xem chi tiết
lã huyền như
Xem chi tiết
I - Vy Nguyễn
15 tháng 3 2020 lúc 20:50

a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1

\(\implies\) \(b\sqrt{2}=a\)

\(\implies\) \(b^2.2=a^2\)

\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(a\) chia hết cho \(2\) 

\(\implies\) \(a^2\) chia hết cho \(4\)

\(\implies\) \(b^2.2\) chia hết cho \(4\)

\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(b\) chia hết cho \(2\)

\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)

\( \implies\) Điều giả sai

\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )

b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )

\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ 

 Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ 

\( \implies\) Mâu thuẫn

\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )

Khách vãng lai đã xóa
I - Vy Nguyễn
15 tháng 3 2020 lúc 20:58

cậu bỏ cho tớ dòng thứ 5 với dòng ấy tớ ghi thừa

Khách vãng lai đã xóa
I - Vy Nguyễn
15 tháng 3 2020 lúc 21:13

 Xin lỗi , xin lỗi lúc nãy tớ viết vội quá nên râu ông nọ cắm cằm bà kia . Bây giờ sửa lại ý a) 

a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1

\( \implies\) \(b\sqrt{2}=a\)

\( \implies\) \(b^2.2=a^2\)

\( \implies\) \(a^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố 

\( \implies\) \(a\) chia hết cho \(2\)

\( \implies\) \(a^2\) chia hết cho \(4\)

\( \implies\)  \(b^2.2\) chia hết cho \(4\)

\( \implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố nên suy ra \(b\) chia hết cho \(2\)

\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)

\( \implies\) Điều giả sử sai

\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )

Khách vãng lai đã xóa
Nguyễn Văn Khải
Xem chi tiết
Thám tử trung học Kudo S...
30 tháng 5 2017 lúc 20:48

Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k. 

Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ. 
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2 
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2. 
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn) 

Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.

Phương Trình Hai Ẩn
29 tháng 5 2017 lúc 20:56

Tham khảo nè bác :)

Câu hỏi của Đỗ Văn Hoài Tuân - Toán lớp 7 - Học toán với OnlineMath

Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k. 

Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ. 

Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2 => p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2. 

Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn) Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ

(đ.p.c.m)

nguyển văn hải
29 tháng 5 2017 lúc 21:02

=>căn n =a/b(b khác 0)(số hữu tỉ có thể biểu diễn như vậy)

<=> n=a^2/b^2

<=>a^2=b*c^2

mà a^2 và b^2 là hai số chính phương

=> n là số chính phương

=> trái giả thiết => giả sứ sai

=>a ko phải là số chính phương => căn a là số vô tỉ

Tuấn Huỳnh Minh
Xem chi tiết
hoa
Xem chi tiết
Nguyễn Tú Nguyên
28 tháng 7 2017 lúc 21:32

cũng nhưu nhân số âm và số dương can cũng chứng minh tương tự 

vì căn 2 là số vô tỉ 

vì cắn 3 là số vô tỉ 

và căn 5 cũng là số vô tỉ nên khi cộng lại với nhau nó sẽ ra số vô tỉ 

Ngô Phương Anh
Xem chi tiết
nguen quang huy
10 tháng 5 2015 lúc 21:49

đ                                           

Le Thai Huy
Xem chi tiết
L.A.Đ.H L(*OεV*)E(灬♥ω♥...
Xem chi tiết
Trần Mạnh
27 tháng 2 2021 lúc 12:46

# TK:

cach1

Phong Thần
27 tháng 2 2021 lúc 12:49

Giả sử √2 không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √2 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.

Ta có: (√2 )2 = (a/b)2 hay a2=2b2 (1)

Kết quả trên chứng tỏ a là số chẵn, nghĩa là ta có a = 2c với c là số nguyên.

Thay a = 2c vào (1) ta được: (2c)2=2b2 hay b2=2c2

Kết quả trên chứng tỏ b phải là số chẵn.

Hai số a và b đều là số chẵn, trái với giả thiết a và b không có ước chung nào khác 1 và -1.

Vậy √2 là số vô tỉ.

Aaron Lycan
27 tháng 2 2021 lúc 12:58

Giả sử √2 là số hữu tỉ thì nó viết được dưới dạng :

m/n với m, n thuộc N, (m, n)=1

Do 2 không là số chính phương nên m/n không là số tự nhiên, do đó n>1

Ta có m2=2n2. Gọi p là ước nguyên tố nào đó của n, thế thì m2 chia hết cho p 

=> m chia hết cho p.

=> p là ước nguyên tố của m và n (trái với (m, n) =1)

=>√2 ko là số hữu tỉ 

=>√2 là số vô tỉ.

nguyễn đào hải dương
Xem chi tiết