Chứng minh: a + c = 2b và 2bd = c (b + d) (b,d ≠ 0) thì \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng nếu a + c = 2b và 2bd = c(b + d ) thì \(\frac{a}{b}=\frac{c}{d}\)với b,d khác 0.
Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có : 2bd = c (b + d )
=) ( a + c ). d = bc + cd
=) ad + cd = bc + cd
=) ad = bc
=) a/b = c/ d ( đpcm)
Ta có : 2bd = c (b + d )
=> ( a + c ). d = bc + cd
=>ad + cd = bc + cd
=>ad = bc
=> a/b = c/ d ( đpcm)
Chứng minh nếu a+c=2b và 2bd=c(b+d) thì \(\frac{a}{b}\)=\(\frac{c}{d}\)với b,d khác 0
Ta có 2bd=c(b+d) \(=>\frac{2b}{c}=\frac{b+d}{d}\)
Mà a+c=2b nên \(\frac{a+c}{c}=\frac{b+d}{d}=>\frac{a+c}{b+d}=\frac{c}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)
Vậy \(\frac{a}{b}=\frac{c}{d}\)
cho a+c=2b và 2bd=c(b+d) với b khác 0, d khác 0. chứng minh \(\frac{a}{b}=\frac{c}{d}\)
Ta có:
a+c=2b (*1)
2bd=c(b+d) (*2)
Thay (*1) vào (*2) ta có:
(a+c)d=c(b+d)
ad+cd=cb+cd
mà cd=cd
=> ad=cb
=> \(\frac{a}{b}=\frac{c}{d}\)
Từ a+c=2b=> 2bd=(a+c)b=c(b+d)
ab+bc=cb+cd
ab+bc-cb-cd=0
ab-cd=0
ab=cd => a/b=c/d (đpcm)
Cho các số a,b,c,d khác 0, thỏa mãn a+c = 2b ; 2bd = c(b+d). Chứng minh \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
2bd=c(b+d)
<=>(a+c)d=bc+cd
<=>ad+cd=bc+cd
<=>ad=bc
<=>\(\frac{a}{b}=\frac{c}{d}\)
<=>\(\frac{a}{c}=\frac{b}{d}\) <=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)<=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)
Cho a + c =2b và 2bd=c(b + d) (với b,d khác 0)
Chứng minh \(\frac{a}{b}\)= \(\frac{c}{d}\)
Giải thích các bước giải: Ta có : a+c=2b, 2bd=c(b+d)
-> 2bd=(a+c)d =c(b+d)
-> ad+cd = bc+cd
-> ad=bc
-> a/b=c/d
2, CMR nếu a+c=2b và 2bd=c(b+d) (b khác 0, d khác 0) thì \(\frac{a}{b}=\frac{c}{d}\)
Đặt a +c vào 2bd ta có
(a + c)d = c(b + d)
=> ad + cd = cb + cd
=> ad = cb
=> \(\frac{a}{b}=\frac{c}{d}\)
Đặt a +c vào 2bd ta có
(a + c)d = c(b + d)
=> ad + cd = cb + cd
=> ad = cb
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Thay a+c=2b vào 2bd=c(b+d) ta đc :
(a+c)d=c(b+d)
ad+cd=bc+cd
ad=bc
nên a/b=c/d(đpcm)
Cho a + c = 2b và 2bd = c(b+d).
Nếu b và d khác 0 thì \(\frac{a}{b}-\frac{c}{d}=......\)
Ta có:2bd=c(b+d)
Hay (a+c)d=c(b+d)
\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)(T/C...)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-\frac{c}{d}=0\)
CMR nếu a + c = 2b và 2bd = c (b+d) thì \(\frac{a}{b}=\frac{c}{d}\) với b, d khác 0
a + c =2b ( 1 )
2bd = c(b+d) ( 2)
từ (1) và (2) ta được:
( a+ c ) .d = c.( b + d )
theo tính chất phân phối ta có"
ad + cd = cb + cd
=> ad = cb => a/b = c/d
k mknhes
Chứng minh rằng: Nếu a+c= 2b và 2bd=c(b+d) (b+d khác 0) thì a/b=c/d
\(2bd=c\left(b+d\right)\Rightarrow2b=\frac{c\left(b+d\right)}{d}\)
\(\Rightarrow a+c=\frac{c\left(b+d\right)}{d}\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có:
\(a+c=2b_{\left(1\right)}\)
\(2bd=c\left(b+d\right)_2\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\left(a+c\right).d=c.\left(b+d\right)\)
\(\Rightarrow\)\(ad+cd=cb+cd\)( tính chất phân phối )
\(\Rightarrow\)\(ad=bc\)( rút gọn cả 2 vế cho \(cd\))
\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( tính chất cơ bản của tỉ lệ thức )
\(\Rightarrow\)\(\left(đpcm\right)\)