2 Có số dạng \(1+2^{3^{1966}}\) có phải là số nguyên tố không
2 Có số dạng \(1+2^{3^{1966}}\) có phải là số nguyên tố không
Chứng tỏ rằng mọi số nguyên tố lớn hơn 3 đều được viết dưới dạng 6n+1 hoặc 6n-1 (n thuộc N*).
Có phải mọi số có dạng 6n+1 hoặc 6n-1 ( n thuộc N* ) đều là số nguyên tố hay không ?
a) Vì \(\left\{{}\begin{matrix}6n⋮3\\6n+2=2\left(3n+1\right)⋮2\\6n-2=2\left(3n-1\right)⋮2\\6n\pm3=3\left(n\pm1\right)⋮3\end{matrix}\right.\)
\(\Rightarrow\left(6n;6n\pm2;6n\pm3\right)\) là các hợp số
Nên \(n>3\) thì các số nguyên tố có thể là \(6n+1\) hoặc \(6n-1\)
b) \(6n+1\) hoặc \(6n-1\left(n\inℕ^∗\right)\) không đêu là số nguyên vì \(6.4+1=25\left(n=4\right)\) là hợp số.
CMR: Mọi số nguyên tố > 3 đều có dạng 3n+1 hoạc 3n-1(n thuộc N*)
Có phải mọi số tự nhiên có dạng 3n+1 hoặc 3n-1 đều là số nguyên tố hay không
Các bạn giải nhanh nhé mình đang cần gấp
+) Vì nếu số đó lớn hơn 3 có dạng là 3n thì số đó chia hết cho 3 => Hợp số
=> Số đó phải có dạng 3n + 1( chia 3 dư 1) hoặc 3n - 1
Với 3n - 1 tương đương với 3(n-1) + 2 ( chia 3 dư 2)
+) Chưa chắc đã là số nguyên tố , Giả sử n lẻ => 3n lẻ => 3n - 1 hoặc 3n + 1 chẵn => Hợp số
1. chứng tỏ rằng
a . Mọi số nguyên tố lớn hơn 2 đều viết dưới dạng 4n+ 1 hoặc 4n-1( n thuộc n*)
b. Có phải mọi số tự nhiên có dạng 4n+1 hoặc 4n-1 ( n thuộc N*) đều là số nguyên tố hay không
VD: 25=4.6+1=52
15=4.4-1=3.5
Bạn chỉ cần lấy ví dụ đơn giản cho bài như thế là được
kho nhi . ba con co bacoi cho con xin ot cai ****
Chứng minh rằng các số có dạng : A(n)= (3n)4n+1 + 2 với n thuộc N* không phải là số nguyên tố
Chứng minh các số nguyên dạng A(n)=3^2^4n+1 +2 với n là số tự nhiên dều không phải là số nguyên tố
a)chứng tỏ rằng với mọi số nguyên tố lớn hơn 3 đều được viết dưới dạng 6n + 1 hoặc 6n - 1 (n thuộc N*) ?
b) có phải mọi số có dạng 6n + 1 hoặc 6n - 1 đều là số nguyên tố không?
a) Mọi số tự nhiên m > 3 đều viết được một trong các dạng :
6n - 2 ; 6n - 1 ; 6n ; 6n + 1 ; 6n + 2 ; 6n + 3 (n thuộc N*)
Trong các số trên , các số 6n - 2 ; 6n ; 6n + 2 ; 6n + 3 là hợp số .
Vậy số nguyên tố lớn hơn 3 có dạng 6n - 1 và 6n + 1.(n thuộc N*)
b) không . Ví dụ 6 . 4 + 1= 25 là hợp số
uululjuljguljgguljgghuljgghuuljgghuguljgghugyuljgghugytuljgghugytuuljgghugytuuuljgghugytuuuuljgghugytuuuuuljgghugytuuuuuuljgghugytuuuuuiuljgghugytuuuuuiiuljgghugytuuuuuiiduljgghugytuuuuuiidtuljgghugytuuuuuiidtu tththhthhgthhgfthhgfcthhgfcg\(\orbr{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\\\end{cases}}\phi^{ }}\)
1. Số nguyên tố lớn nhất trong phạm vi 100 là:
2. Có phải các số nguyên tố đều là số lẻ không? Vì sao?
3. Có phải tất cả các số tự nhiên trong hệ thập phân từ 10 trở lên là hợp số không? Vì sao?
Trả lời:
1. Số nguyên tố lớn nhất trong phạm vi 100 là 97.
2. Không. Vì 2 là số chẵn.
3. Không. Vì như câu 1, 97 là số nguyên tố.
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!