Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cường Bảo
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Ngoc Huy
Xem chi tiết
Phạm Kim Ngân
19 tháng 12 2020 lúc 20:24

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

Phạm Kim Ngân
19 tháng 12 2020 lúc 20:26

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

đăng quang hồ
Xem chi tiết
lê thanh tình
24 tháng 11 2021 lúc 7:00

nhìu giữ cha !!!!

Akai Haruma
24 tháng 11 2021 lúc 9:22

a.

$12x^3y-24x^2y^2+12xy^3=12xy(x^2-2xy+y^2)=12xy(x-y)^2$
b.

$x^2-6x+xy-6y=(x^2+xy)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)$
c.

$2x^2+2xy-x-y=2x(x+y)-(x+y)=(x+y)(2x-1)$

d.

$x^3-3x^2+3x-1=(x-1)^3$

e.

$3x^2-3y^2-12x-12y=(3x^2-3y^2)-(12x+12y)$

$=3(x-y)(x+y)-12(x+y)=(x+y)[3(x-y)-12]=3(x-y)(x-y-4)$

f.

$x^2-2xy-x^2+4y^2=4y^2-2xy=2y(2y-x)$

Akai Haruma
24 tháng 11 2021 lúc 9:25

g.

$x^2+2x+1=(x+1)^2$

h. Không phân tích được thành nhân tử

i.

$x^2-2x-3=(x^2-3x)+(x-3)=x(x-3)+(x-3)=(x+1)(x-3)$

j.

$x^2+4x-12=(x^2-2x)+(6x-12)=x(x-2)+6(x-2)=(x-2)(x+6)$

k.

$x^2-8x-9=(x^2+x)-(9x+9)=x(x+1)-9(x+1)=(x+1)(x-9)$

l.

$x^2+x-6=(x^2+3x)-(2x+6)=x(x+3)-2(x+3)=(x-2)(x+3)$

 

BuBu siêu moe 방탄소년단
Xem chi tiết
Trên con đường thành côn...
24 tháng 8 2021 lúc 21:47

undefined

Đoàn Phan Hưng
Xem chi tiết
Nguyễn Huy Tú
20 tháng 7 2021 lúc 9:32

undefined

hải hà
Xem chi tiết
Đường Quỳnh Giang
28 tháng 8 2018 lúc 1:26

\(A=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)

\(=-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2-5\right]\)

\(=5-\left(x-y-1\right)^2-3\left(y-2\right)^2\le5\)

Dấu"=" xảy ra  <=>  \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\) <=>  \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy MAX  \(A=5\)khi  \(x=3;\)\(y=2\)

Le Thi Kim Anh
Xem chi tiết
Khôi Bùi
28 tháng 8 2018 lúc 16:39

\(-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2-2xy+y^2\right)+2\left(x-y\right)+12y-8-3y^2\)

\(=-\left(x-y\right)^2+2\left(x-y\right)-3\left(y^2-4y+4\right)+4\)

\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-3\left(y-2\right)^2+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\)

\(=-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2\right]+5\le5\forall x;y\)

Dấu " = " xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)^2=0\\3\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\\left(y-2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+1\\y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy GTLN của biểu thức trên là : \(5\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)