Cm: A=-x2+2xy-4y2+2x+10y-8 có GTLN
Tìm GTLN của BT
-x2+2xy-4y2+2x+10y-8
-x2-y2+xy+x+y
tim gia tri nho nhat cua bieu thuc A = x2 -2xy + 4y2 -2x -10y +3
a, -x2 + 2x + 3
b, x2 - 2x + 4y2 - 4y + 8 c, -x2 - y2 + xy + 2x + 2y + 4 d, x2 + 5y2 - 4xy - 2y + 2015 e, 2x2 + y2 + 6x + 2y + 2xy + 2018A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
a. 12x3y – 24x2y2 + 12xy3 b. x2 – 6 x +xy – 6y c. 2x2 + 2xy x – y d. x3– 3x2 + 3x – 1 e. 3x2 – 3y2 – 12x – 12y f. x2 – 2xy – x2 + 4y2
| g. x2 + 2x + 1 – 16 h.x2 – 2x – 4y2 + 1 i. x2 – 2x –3 j. x2 + 4x –12 k. x2 – 8 x – 9 l. x2 + x – 6
|
a.
$12x^3y-24x^2y^2+12xy^3=12xy(x^2-2xy+y^2)=12xy(x-y)^2$
b.
$x^2-6x+xy-6y=(x^2+xy)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)$
c.
$2x^2+2xy-x-y=2x(x+y)-(x+y)=(x+y)(2x-1)$
d.
$x^3-3x^2+3x-1=(x-1)^3$
e.
$3x^2-3y^2-12x-12y=(3x^2-3y^2)-(12x+12y)$
$=3(x-y)(x+y)-12(x+y)=(x+y)[3(x-y)-12]=3(x-y)(x-y-4)$
f.
$x^2-2xy-x^2+4y^2=4y^2-2xy=2y(2y-x)$
g.
$x^2+2x+1=(x+1)^2$
h. Không phân tích được thành nhân tử
i.
$x^2-2x-3=(x^2-3x)+(x-3)=x(x-3)+(x-3)=(x+1)(x-3)$
j.
$x^2+4x-12=(x^2-2x)+(6x-12)=x(x-2)+6(x-2)=(x-2)(x+6)$
k.
$x^2-8x-9=(x^2+x)-(9x+9)=x(x+1)-9(x+1)=(x+1)(x-9)$
l.
$x^2+x-6=(x^2+3x)-(2x+6)=x(x+3)-2(x+3)=(x-2)(x+3)$
Tìm \(x,\) \(y\) sao cho:
\(B=-x^2+2xy-4y^2+2x+10y-8\) có \(GTLN\)
1) x3-x2+2x-2 4) ax-2x-a2+2a 7) x2-6xy-25z2+9y2
2) x2-y2+2x+2y 5) 2xy +3z+6y+xz 8) x3-2x2+x
3) x2/4+2xy+4y2-25 6) x2y2+yz+y3+zx2 9) x4+4
tìm GTLN: -x^2+2xy-4y^2+2x+10y-8
\(A=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)
\(=-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2-5\right]\)
\(=5-\left(x-y-1\right)^2-3\left(y-2\right)^2\le5\)
Dấu"=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy MAX \(A=5\)khi \(x=3;\)\(y=2\)
tìm gtln của -x^2+2xy-4y^2+2x+10y-8
tìm GTLN: -x^2+2xy-4y^2+2x+10y-8
\(-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy+y^2\right)+2\left(x-y\right)+12y-8-3y^2\)
\(=-\left(x-y\right)^2+2\left(x-y\right)-3\left(y^2-4y+4\right)+4\)
\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-3\left(y-2\right)^2+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\)
\(=-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2\right]+5\le5\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)^2=0\\3\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\\left(y-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+1\\y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy GTLN của biểu thức trên là : \(5\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)