Cho tam giác ABC, điểm M nằm giữa B và C
Chứng minh AB2.MC+AC2.MB-AM2.BC=MB.MC.BC
Cho tam giác ABC, điểm M nằm giữa B và C. Chứng minh:
\(AB^2.MC+AC^2.MB-AM^2.BC=MB.MC.BC\)
cho tam giác ABC . M là trung điểm BC . c m AB2 AC2 2 AM2 BC2 2
Cho tam giác ABC, điểm M thuộc BC sao cho MB<MC. H là trung điểm BC. Chứng minh điểm M nằm giữa hai điểm B và H.
Cho tam giác ABC đều, nội tiếp (O). Trên cung nhỏ BC, lấy M bất kì.
a) Cchứng minh: MB + MC = MA.
b) Gọi H là giao của MA với BC. Chứng minh : \(\dfrac{1}{MB}+\dfrac{1}{MC}=\dfrac{1}{MH}\)
a, Trên AM lấy điểm E sao cho ME = MB
Có : góc BME = góc BCA = 60 độ
=> tam giác EMB đều => EB = MB và góc EMB = 60 độ
Góc EMB = 60 độ => góc EBC + góc CBM = 60 độ
Lại có : góc ABC = 60 độ nên góc ABE + góc EBC = 60 độ
=> góc ABE = góc CBM
=> tam giác AEB = tam giác CMB (c.g.c)
=> AE = CM
=> AM
= AE + EM = CM+BM
b, Theo câu a có tam giác AEB = tam giác CMB
=> góc EAB = góc MCB
=> tam giác MDC đồng dạng tam giác MBA (g.g)
=> MC/MA = MD/MB
=> MD.MA=MB.MC
Có : MD/MB + MD/MC = MD.(1/MB + 1/MC) = MD.(MB+MC)/MB.MC = MD/MA/MB.MC = 1
Cho tam giác ABC, điểm M bất kỳ nằm trong tam giác.
a) So sánh MB + MC với BC
b) Chứng minh M A + M B + M C > A B + B C + C A 2
Cho tam giác ABC,lấy điểm D thuộc BC(D#B,B#C),lấy điểm M là trung điểm AD.Trên tia đối tia MB lấy điểm E sao cho MB=ME.Trên tia đối của tia MC lấy điểm F sao cho MF=MC. Chứng minh :
a) AE//BC
b) A nằm giữa F và E
Cho tam giác ABC vuông cân ở A;M là điểm tùy ý nằm giữa B và C.Vẽ đường cao AH của tam giác ABC.
a) chứng minh AH=BC/2
b*)chứng minh MB^2+MC^2=2MA^2
Cho tam giác ABC có ba góc nhọn và AH là đường cao
a, Chứng minh: A B 2 + C H 2 = A C 2 + B H 2
b, Vẽ trung tuyến AM của tam giác ABC, chứng minh:
1. A B 2 + A C 2 = B C 2 2 + 2 A M 2
2. A C 2 - A B 2 = 2 B C . H M (với AC > AB)
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM
Cho tạm giác ABC . Điểm M nằm trong tam giác ABC. Chứng minh:
a,MB+MC<AB+AC
B,MA+MC<BA+BC