Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tuấn anh vũ
Xem chi tiết
thi hue nguyen
Xem chi tiết
Kiệt Nguyễn
13 tháng 7 2019 lúc 14:36

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n⋮5\)

Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\left(đpcm\right)\)

Đông Phương Lạc
13 tháng 7 2019 lúc 14:41

Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=\left(2n^2-2n^2\right)-\left(3n+2n\right)\)

\(=-5n⋮5\forall n\inℕ\left(đpcm\right)\)

Rất vui vì giúp đc bạn <3

Nguyễn Trần Lam Trúc
Xem chi tiết
Trên con đường thành côn...
7 tháng 8 2021 lúc 20:33

undefined

Nguyễn Lê Phước Thịnh
7 tháng 8 2021 lúc 23:05

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Nguyễn Ngọc Diệp
Xem chi tiết
 Đào Xuân Thế Anh
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Khách vãng lai đã xóa
Phí Mạnh Huy
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Khách vãng lai đã xóa
Đỗ Hương Chi
26 tháng 11 2021 lúc 19:30

???????????????????
 

Khách vãng lai đã xóa
No name
Xem chi tiết
Bò Vinamilk 3 không (Hộ...
19 tháng 8 2019 lúc 22:21

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

Phạm Hà Ngọc Trung
Xem chi tiết
Nguyễn Minh Quang
17 tháng 10 2021 lúc 7:29

ta có n và n+1 là hai số tự nhiên liên tiếp

nên nhất định 1 trong hai số là số chẵn

nên n(n+1) chia hết cho 2

Khách vãng lai đã xóa
Nguyễn Lê Nguyên Vy
Xem chi tiết
Chiminh
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Phạm Anh tuấn
Xem chi tiết
lý vũ huy tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 13:37

a:

\(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)

Đặt \(S=1^2+2^2+...+n^2\)

Với n=1 thì \(S_1=1^2=1=\dfrac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}\)

=>(1) đúng với n=1

Giả sử (1) đúng với n=k

=>\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta sẽ cần chứng minh (1) đúng với n=k+1

Tức là \(S_{k+1}=\dfrac{\left(k+1+1\right)\cdot\left(k+1\right)\left(2\cdot\left(k+1\right)+1\right)}{6}\)

Khi n=k+1 thì \(S_{k+1}=1^2+2^2+...+k^2+\left(k+1\right)^2\)

\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(=\left(k+1\right)\left(\dfrac{k\left(2k+1\right)}{6}+k+1\right)\)

\(=\left(k+1\right)\cdot\dfrac{2k^2+k+6k+6}{6}\)

\(=\left(k+1\right)\cdot\dfrac{2k^2+3k+4k+6}{6}\)

\(=\dfrac{\left(k+1\right)\cdot\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+1+1\right)\left[2\left(k+1\right)+1\right]}{6}\)

=>(1) đúng

=>ĐPCM
b: \(A=1\cdot5+2\cdot6+3\cdot7+...+2023\cdot2027\)

\(=1\left(1+4\right)+2\left(2+4\right)+3\left(3+4\right)+...+2023\left(2023+4\right)\)

\(=\left(1^2+2^2+3^2+...+2023^2\right)+4\left(1+2+2+...+2023\right)\)

\(=\dfrac{2023\cdot\left(2023+1\right)\left(2\cdot2023+1\right)}{6}+4\cdot\dfrac{2023\left(2023+1\right)}{2}\)

\(=\dfrac{2023\cdot2024\cdot4047}{6}+\dfrac{2023\cdot2024}{1}\)

\(=2023\left(\dfrac{2024\cdot4047}{6}+2024\right)⋮2023\)

\(A=\dfrac{2023\cdot2024\cdot4047}{6}+2023\cdot2024\)

\(=2024\left(2023\cdot\dfrac{4047}{6}+2023\right)\)

\(=23\cdot11\cdot8\cdot\left(2023\cdot\dfrac{4047}{6}+2023\right)\)

=>A chia hết cho 23 và 11