Bài tập: Cho hình chữ nhật ABCD có AB= 2BC. Trên BC lấy E, tia AE cắt đường thẳng CD tại F.Đường vuông góc với AF tại A cắt CD tại K.
a) Tính AK/AE
b) Chứng minh 1/AB^2= 1/AE^2 + 1/4AF^2
Giúp mn vs😊😊
Cho hình chữ nhật ABCD, AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh rằng:\(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}\)
Vẽ AM ⊥ AF cắt tia CB tại M.
△AME vuông tại A, đg cao AB: \(\dfrac{1}{AB^2}\) = \(\dfrac{1}{AM^2}\)+\(\dfrac{1}{AE^2}\) (1)
Xét ΔABM vuông tại B và ΔADF vuông tại D có: góc MAB = góc FAD (cùng phụ góc BAE)
⇒ △ABM ∽ △ADF (g.g)
⇒ \(\dfrac{AM}{AF}\) = \(\dfrac{AB}{AD}\) = 2
⇒ AM = 2AF (2)
(1)(2) ⇒ \(\dfrac{1}{AB^2}\) = \(\dfrac{1}{4AF^2}\)+\(\dfrac{1}{AE^2}\)
1. cho hình vuông ABCD tại lấy điểm E thuộc BC . Tia AE cắt tia DC tại F . Đường vuông góc với AE tại A cắt tia CD . a) chứng minh tam giác AEP cân . b) chứng minh 1/AB ( mũ 2 ) = 1/AE ( mũ 2 ) + 1/AF ( mũ 2 )
~ Giúp mình với ~
a)Xét \(\Delta APD\) và \(\Delta AEB\) có:
\(\widehat{ADP}=\widehat{ABE}=90^o\)
AD = AB ( hvABCD)
\(\widehat{PAD}=\widehat{EAB}\) (cùng phụ \(\widehat{DAE}\))
=> \(\Delta APD\) = \(\Delta AEB\) (gcg)
=>AP=AE
mà \(\widehat{PAE}=90^o\left(gt\right)\)
=>\(\Delta APE\) vuông cân tại A
b) Xét \(\Delta APF\) vuông tại A có:
\(\dfrac{1}{AP^2}+\dfrac{1}{AF^2}=\dfrac{1}{AD^2}\) ( hệ thức lượng trong tam giác vuông )
mà AP=AE ; AD=AB
=>\(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{AB^2}\)
Giúp mình với!
Cho hình vuông ABCD. Gọi E là diểm thuộc cạnh BC(E khác B). Tia AE cắt tia DC tại K. Kẻ d qua A vuông góc AE. Đường thẳng d cắt CD tại I.
a) Chứng minh 1/AE^2 +1/AK^2 không thay đổi khi E di chuyển trên BC
b) đường thẳng đi qua A vuông góc với IE cắt đường thẳng CD tại M. Kẻ MQ vuống góc AE. Chứng minh tam giác AMQ vuông cân và 1/AE +1/AK= căn 2/AM
c) Tìm vị trí của E để IK ngắn nhất.
cho hình chữ nhật ABCD có AD= 2AB. Trên cạnh BC lấy E bất kỳ, tia AE cắt DC tại K. Qua A kẻ đường thẳng vuông góc AE cắt CD tại H
a, chứng minh tam giác ABE đồng dạng tam giác ADH
b, chứng minh \(\frac{1}{AE^2}+\frac{4}{AK^2}khôngđổikhiEthayđổi\)
Cho hcn ABCD, AB =2BC. Trên BC lấy E, tia AE cắt đường thẳng CD tại F. CM; 1/ AB mũ 2= 1/ AE mũ 2 + 1/ 4AF mũ 2
Cho hình vuông ABCD có cạnh bằng a, lấy E là 1 điểm bất kì trên cạnh BC , hai đường thẳng AE và CD cắt nhau tại F , vẽ tia Ax thẳng góc với AE tại A cắt CD tại I. C/M \(\frac{1}{AB^2}+\frac{1}{AE^2}=\frac{1}{AF^2}\)
Bài này ngó qua ngó lại thì không khó lắm. Tối giải nha.
Cho hình chữ nhật ABCD, AB = 2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Cmr: \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}\)
Từ F kẻ đường thẳng song song BC cắt AB tại M
\(\Rightarrow\) \(AM^2 + MF^2 = AF^2 \)(1)
Mà \(MF =BC =\dfrac{AB}{2}\)
(1) \(\Leftrightarrow\) \(AM^2 + \dfrac{AB^2}{4} = AF^2\)
\(\Rightarrow\)\(\dfrac{AM^2}{AF^2} + \dfrac{AB^2}{4AF^2} =1\) (2)
Mà \(\dfrac{AM}{AF} = \dfrac{AB}{AE}\)
(2) \(\Rightarrow\) \(\dfrac{AB^2}{AE^2} +\dfrac{AB^2}{4AF^2} =1\)
\(\Rightarrow\) \(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{4AF^2}\)
Các bạn giúp mình 2 bài này với. Mình đang cần rất khẩn cấp
1. Cho hình vuông ABCD. Lấy điểm E trên cạnh BC. Tia AE cắt đường thẳng CD tại G. Trên nửa mặt phẳng bờ là đường thẳng AE chứa tia AD, kẻ AF vuông góc với AE và AF=AE
a.Chứng minh ba điểm F,C,D thẳng hàng.
b. Chứng minh \(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AG^2}\)
C. Biết AD=13cm, \(\frac{AF}{AG}=\frac{10}{13}\). Tính độ dài FG
2. Cho hình thang ABCD (AB//CD,AB<CD), M và N là trung điểm của hai đáy AB và CD. Biết MN=\(\frac{CD-AB}{2}\)
a. Chứng minh góc C + góc D =90 độ
b.Biết AD=AB=6cm, BC=8cm. Tính diện tích hình thang ABCD
cho hình vuông ABCD , cạnh có độ dài bằng a . E là 1 điểm di động trên CD(E khác C,D).AE cắt BC tại F ,kẻ đường thẳng vuông góc với AE tại A cắt CD tại K
a,Chứng minh:1/AF^2+1/AE^2=không đổi
b,chứng minh : cosAKE=sinEKF.cosEFK+sinEFK.cosEKF