\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=2006\left(2x-1\right)+\sqrt{2}+\sqrt{3}+\sqrt{5}\)
Giải phương trình:
\(\sqrt{10+\sqrt{24}+\sqrt{40}\sqrt{60}}=2006\left(2x-1\right)+\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=2005\left(2x-1\right)+\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\Leftrightarrow\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{3\cdot5}}=2005\left(2x-1\right)+\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=2005\left(2x-1\right)+\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\Leftrightarrow2005\left(2x-1\right)=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Hải Ngọc nhầm 2006 thành 2005 rồi
Rút gọn biểu thức
E=\(\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\)
F= \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
H= \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}\)
không dùng máy tính , tính giá trị của các biểu thức sau
1)\(\left(1+\sqrt{2}+\sqrt{3}\right)\cdot\left(1+\sqrt{2}+\sqrt{3}\right)\)
2)\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}\)
3)\(\dfrac{2+\sqrt{3}}{\sqrt{7-4\sqrt{3}}}-\dfrac{2-\sqrt{3}}{\sqrt{7+4\sqrt{3}}}\)
4)\(\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
5)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
6)\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
mình đang cần gấp làm nhanh nha mọi người
2: \(=\sqrt{2}-1-\sqrt{2}=-1\)
3: \(=\dfrac{2+\sqrt{3}}{2-\sqrt{3}}-\dfrac{2-\sqrt{3}}{2+\sqrt{3}}\)
\(=\dfrac{7+4\sqrt{3}-7+4\sqrt{3}}{1}=8\sqrt{3}\)
4: \(=1+\dfrac{2-\sqrt{3}}{2-\sqrt{3}}=1+1=2\)
Rút gọn biểu thức
a) A= \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
b) B= \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}\)
c) C= \(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\)
Lời giải:
a)
\(\frac{2A}{\sqrt{2}}=\frac{4+2\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{4-2\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}=\frac{3+1+2\sqrt{3}}{2+\sqrt{3+1+2\sqrt{3}}}+\frac{3+1-2\sqrt{3}}{2-\sqrt{3+1-2\sqrt{3}}}\)
\(=\frac{(\sqrt{3}+1)^2}{2+\sqrt{(\sqrt{3}+1)^2}}+\frac{(\sqrt{3}-1)^2}{2-\sqrt{(\sqrt{3}-1)^2}}=\frac{(\sqrt{3}+1)^2}{2+\sqrt{3}+1}+\frac{(\sqrt{3}-1)^2}{2-(\sqrt{3}-1)}\)
\(=\frac{(\sqrt{3}+1)^2}{\sqrt{3}(\sqrt{3}+1)}+\frac{(\sqrt{3}-1)^2}{\sqrt{3}(\sqrt{3}-1)}=\frac{\sqrt{3}+1}{\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}}=2\)
$\Rightarrow A=\sqrt{2}$
b)
\(B=\sqrt{10+2\sqrt{15}-2\sqrt{6}-2\sqrt{10}}=\sqrt{(8+2\sqrt{15})+2-2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5})^2+2-2\sqrt{2}(\sqrt{3}+\sqrt{5})}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5}-\sqrt{2})^2}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
c)
\(C=\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4x+4}}=\frac{\sqrt{(x-1)-2\sqrt{x-1}+1}+\sqrt{(x-1)+2\sqrt{x-1}+1}}{\sqrt{(x-2)^2}}\)
\(=\frac{\sqrt{(\sqrt{x-1}-1)^2}+\sqrt{(\sqrt{x-1}+1)^2}}{|x-2|}=\frac{|\sqrt{x-1}-1|+|\sqrt{x-1}+1|}{|x-2|}\)
Bài 1:Thực hiện phép tính
1. \(\sqrt{27}-3\sqrt{48}-2\sqrt{75}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
2.\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right).\sqrt{5}+\left(40\sqrt{\frac{1}{10}}-10\right)\)
3.\(\left(\sqrt{24}-\sqrt{\frac{2}{3}}-\sqrt{\frac{1}{6}}+\sqrt{\frac{3}{2}}\right).\sqrt{6}\)
\(\sqrt{10+\sqrt{24}-\sqrt{60}-\sqrt{40}}\)
\(=\sqrt{\sqrt{2}^2+\sqrt{3}^2+\left(-\sqrt{5}\right)^2+2\sqrt{2.3}-2\sqrt{2.5}-2\sqrt{3.5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)^2}\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{5}\)
Giải phương trình:
\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\)
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+3+4x+4\sqrt{x\left(x+3\right)}=4+x\left(x+3\right)+4\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow5x+3=4+x^2+3x\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\left(tm\right)\)
Thực hiện phép tính
a) (\(2\sqrt{3}-\sqrt{2}\))2+\(2\sqrt{24}\)
b) \(\left(3\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+2\sqrt{3}\right)-\sqrt{60}\)
\(a,\left(2\sqrt{3}-\sqrt{2}\right)^2+2\sqrt{24}=\left[\left(2\sqrt{3}\right)^2-2.2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2\right]+2\sqrt{24}\\ =\left[12-4\sqrt{6}+2\right]+2\sqrt{24}=14-4\sqrt{6}+4\sqrt{6}=14\\ b,\left(3\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+2\sqrt{3}\right)-\sqrt{60}=3\sqrt{5}.\sqrt{5}-2\sqrt{3}.\sqrt{3}+3\sqrt{5}.2\sqrt{3}-\sqrt{3}.\sqrt{5}-\sqrt{60}\\ =15-6+6\sqrt{15}-\sqrt{15}-\sqrt{2^2.15}\\ =9+3\sqrt{15}\)
bài 1: thực hiện phép tính
a) A=\(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
b) B=\(\sqrt{10+\sqrt{24}}+\sqrt{40}+\sqrt{60}\)
bài 2: tính
M=\(\dfrac{\sqrt{4x+4+\dfrac{1}{x}}}{\sqrt{x}.\left|2x^2-x-1\right|}\)
với \(x=\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{15}}\)