Đưa các biểu thức sau về dạng hằng đẳng thức :
a,4x^2-y^2+2y-1
b,x^2-9y^2+2x+2y+3 phần 8
1.Khai triển các hằng đẳng thức sau ^^
a) (2x^3-y^2)^3
b) (x-3y)(x^2+3xy+9y^2)
c) ( x+2y+z) (x+2y-z)
d) (2x^3y -0,5x^2)^3
e) (x^2-3).(x^4+3x^2+9)
f) (2x-1)(4x^2+2x+1)
1.Khai triển các hằng đẳng thức sau ^^
a) (2x^3-y^2)^3
b) (x-3y)(x^2+3xy+9y^2)
c) ( x+2y+z) (x+2y-z)
d) (2x^3y -0,5x^2)^3
e) (x^2-3).(x^4+3x^2+9)
f) (2x-1)(4x^2+2x+1)
a) \(\left(2x^3-y^2\right)^3\)
\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)
\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)
\(=8x^9-12x^6y^2+6x^3y^4-y^6\)
b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)
\(=\left(x+2y\right)^2-z^2\)
\(=x^2+4xy+4y^2-z^2\)
d) \(\left(2x^3y-0,5x^2\right)^3\)
\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)
e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=\left(x^2-3\right)\left(4x^2+9\right)\)
\(=4x^4+9x^2-12x^2-27\)
\(=4x^4-3x^2-27\)
f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=\left(2x\right)^3-1^3\)
\(=8x^3-1\)
\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)
\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)
bài 1:lấy 5vd về hằng đẳng thức (a+b)^2;
lấy 5vd về hằng đẳng thức (a-b)^2
bài 2; vận dụng (a+b-c)^2;(a-b-c)^2deer giải bài sau
phần a, (4x-5+y)^2
phầnb (5-7x+2y)^2
phầnc (2-7y-3x)^2
phầnd (2x-2y+2z)^2
bài 3 tính giá trị nhỏ nhất hay giá trị lớn nhất của biểu thức sau
A=x^2-42+7
B=x^2-8x
C=-2x^2+5x-15
mọi người giúp cho
1.Khai triển các hằng đẳng thức sau ^^
a) (2x^3-y^2)^3
b) (x-3y)(x^2+3xy+9y^2)
c) ( x+2y+z) (x+2y-z)
d) (2x^3y -0,5x^2)^3
e) (x^2-3).(x^4+3x^2+9)
f) (2x-1)(4x^2+2x+1)
giải giúp mình nha , chìu nộp bài rồi
thanks mấy bạn nhiều nha ^^`~
Gọi diện tích hình vuông là Shv.Khi đó mỗi ô vuông nhỏ có diện tích là Shv9 . Ta thấy ngay diện tích tam giác ABK bằng một nửa diện tích hình chữ nhật AKBH và bằng Shv9 .
Tương tự SAID=SDNC=SBMC=SABK=Shv9 và SIKMN=Shv9
Vậy thì SABCD=4.Shv9 +Shv9 =59 Shv
Vậy diện tích phần còn lại bằng 49 Shv
Suy ra diện tích hình vuông ABCD bằng 54 diện tích phần còn lại.
k mình nha
Tính giá trị biểu thức:
a) [ 12 ( 2 x + 3 y ) 3 - 18 ( 2 x + 3 y ) 2 ]:(-6x - 9y) tại x = 3 2 ;y = l;
b) [ ( 2 x - y ) 4 + 8 ( y - 2 x ) 2 - 2x + y]: (2y - 4x) tại x = 1; y = -2.
B1: Viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu, hoặc hiệu 2 bình phương
a) 4x^4 - 4x^2 +1
b) 16x^2 - 8xy +y^2
c) 49y^2 - 14yz + z^2
d) 64x^2 - 16x + 1
e) 3x^2 - 2√3xy^2 + y^4
f) 5y^2 - 4√5y + 4
g) (√3x - y) (√3x +y)
h) (2√3x - 2y) (2√3x + 2y)
B2: Khai triển hằng đẳng thức sau
a) (2x + y)^3
b) (4x - y)^3
c) (25x + 2)^3
d) 1/2x + 3)^3
Đề bài: Tìm GTLN của biểu thức: ( theo hằng đẳng thức đáng nhớ )
5. -x mũ 2 + x + 1/2
6. -1/4x mũ 2 + x - 2
7. -1/9x mũ 2 - 1/3x + 1
8. -2x mũ 2 + 2xy - 2y mũ 2 + 2x + 2y - 8
Giải:
5) \(-x^2+x-\dfrac{1}{2}\)
\(=-x^2+x-\dfrac{1}{4}+\dfrac{3}{4}\)
\(=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\le\dfrac{3}{4}\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
6) \(-\dfrac{1}{4}x^2+x-2\)
\(=-\dfrac{1}{4}x^2+x-1-1\)
\(=-\left(\dfrac{1}{4}x^2-x+1\right)-1\)
\(=-\left(\dfrac{1}{2}x-1\right)^2-1\le-1\)
\(\Leftrightarrow\dfrac{1}{2}x-1=0\Leftrightarrow x=2\)
Vậy ...
7) \(-\dfrac{1}{9}x^2-\dfrac{1}{3}x+1\)
\(=-\dfrac{1}{9}x^2-\dfrac{1}{3}x-\dfrac{1}{4}+\dfrac{5}{4}\)
\(=-\left(\dfrac{1}{9}x^2+\dfrac{1}{3}x+\dfrac{1}{4}\right)+\dfrac{5}{4}\)
\(=-\left(\dfrac{1}{3}x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{3}x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy ...
8) \(-2x^2+2xy-2y^2+2x+2y-8\)
\(=-x^2+2xy-y^2+2x-x^2+2y-y^2-1-1-6\)
\(=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-6\)
\(=-\left(x-y\right)^2-\left(x-1\right)^2-\left(y-1\right)^2-6\le-6\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Vậy ...
* Đơn thức
Dạng 1:
1) Gía trị của biểu thức 5x^2-3xy^2 tại x=-1, x=1 bằng bao nhiêu ?
2) Gía trị của biểu thức xy+x^2y^2+x^3y^3 tại x=1và x=-1 bằng bao nhiêu
Dạng 2: Nhận biết đơn thức:
1) Biểu thức nào sau đây được gọi là đơn thức :
(2+x)x^2 ; 10x+y ; 1/3xy ; 2y-5
Dạng 3: đơn thức đồng dạng
1) đơn thức nào sau đây đồng dạng với đơn thức 1/5xy^2
A.3x^2y ; B.10xy ; C.1/3x^2y^2 ; D. -7xy^2
2)nhóm các đơn thức nào sau đây là nhóm các đơn thức đồng dạng?
A. 3;1/2;-6;3/4x ; B. -0,5x^2;3/5x^2;x^2;-7x^2 ; C. 2x^2y;-5xy^2;x^2y^2;4xy ; D.-7xy^2;x^3y;5x^2y,9x ;F. 3xy;2/3xy;-6xy;-xy
Dạng 4 Thu gọn đơn thức:
1) Đơn thức 2xy^3.(-3)x^2y được thu gọn thành:
A. -2 1/2x^3y^4; B.-x^3y^4; C. -x^2y^3; D. 3/2x^3y^4
2)tích của 2 đơn thức -2/3xy và 3x^2y là bao nhiêu?
Dạng 5 bậc của đơn thức:
1) bậc của đơn thức -3x^2y^3 là bao nhiêu?
Dạng 6 tổng hiệu của các đơn thức
1) Tổng của 3 đơn thức 4x^3y;-2x^3y;4x^3y là bao nhiêu?
2) tìm tổng của các đơn thức sau: A.1/2xy^2;3xy^2;-1/2xy^2
giúp mk với huhu
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1