giải phương trình: \(x^3-\sqrt[3]{6+\sqrt[3]{x+6}=6}\)
giải với ạ..
Giúp mình với ạ . Cảm ơn nhiều .
1)Giải hệ phương trình : \(\left\{{}\begin{matrix}\sqrt{2x-3}-\sqrt{y}\text{=}2x-6\\x^3+y^3+7xy\left(x+y\right)\text{=}8xy.\sqrt{2\left(x^2+y^2\right)}\end{matrix}\right.\)
2) Giải phương trình : \(\dfrac{2\sqrt{x}}{x-1}.x+6+\sqrt{x+2}\text{=}\sqrt{2-x}+3\sqrt{4-x^2}\)
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Giải phương trình: \(\sqrt{x+3}+\sqrt{6-x}-\sqrt{\left(x+3\right)\left(6-x\right)}=3\)
giúp mình với
\(ĐK:-3\le x\le6\)
Đặt \(t=\sqrt{x+3}+\sqrt{6-x}\left(t>0\right)\Rightarrow t^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\frac{t^2-9}{2}\)
Phương trình trở thành \(t-\frac{t^2-9}{2}=3\Leftrightarrow t^2-2t-3=0\Leftrightarrow\left(t-3\right)\left(t+1\right)=0\Leftrightarrow\orbr{\begin{cases}t=3\left(tm\right)\\t=-1\left(L\right)\end{cases}}\)
Với t = 3 thì \(\sqrt{x+3}+\sqrt{6-x}=3\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=0\Rightarrow\orbr{\begin{cases}x=6\\x=-3\end{cases}}\left(tm\right)\)
Vậy phương trình có tập nghiệm S = {6; -3}
Giải Phương trình
\(6\sqrt[3]{x-3}+\sqrt[3]{x-2}=5\sqrt[6]{\left(x-3\right)\left(x-2\right)}\) Với x>3
Giải phương trình: \(x=\sqrt{x-2}.\sqrt{x-3}+\sqrt{x-3}.\sqrt{x-6}+\sqrt{x-6}.\sqrt{x-2}\)
giải Phương trình :
\(x^3-\sqrt[3]{6+\sqrt[3]{x+6}}=6\)
Giải phương trình: \(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\left(6-x\right)}=3\)
ĐKXĐ: \(-3\le x\le6\)
Đặt \(\sqrt{3+x}=a;\sqrt{6-x}=b\left(a,b\ge0\right)\),ta có
\(\hept{\begin{cases}a+b-ab=3\left(1\right)\\a^2+b^2=9\end{cases}\Rightarrow\hept{\begin{cases}2a+2b-2ab=6\\\left(a+b\right)^2-2ab=9\end{cases}}}\)
\(\Rightarrow\left(a+b\right)^2-2\left(a+b\right)=3\Rightarrow\left(a+b\right)^2-2\left(a+b\right)-3=0\)
\(\Rightarrow\left(a+b-3\right)\left(a+b+1\right)=0\)
Do \(a,b\ge0\)nên a+b+1>0
\(\Rightarrow a+b-3=0\)\(\Rightarrow a+b=3\)thay vào (1) ta được \(ab=0\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}}\)hoặc \(\hept{\begin{cases}a=3\\b=0\end{cases}}\)
Sau đó bn tự thay vào rồi giải tiếp nhé
giải phương trình vô tỉ
\(x^3-\sqrt[3]{6+\sqrt[3]{x+6}}=6\)
Đặt \(t=\sqrt[3]{x+6}\Rightarrow x+6=t^3\Rightarrow x=t^3-6\)
Phương trình trở thành \(x^3-\sqrt[3]{6+t}=6\)
Tiếp tục đặt \(h=\sqrt[3]{6+t}\Rightarrow t=h^3-6\)
Phương trình trở thành \(x^3-h=6\Rightarrow h=x^3-6\)
Từ đó ta có hệ 3 ẩn hoán vị vòng quanh \(\hept{\begin{cases}x=t^3-6\\t=h^3-6\\h=x^3-6\end{cases}}\)
Do x, t và h bình đẳng trong hệ trên nên ta giả sử x = min {x ; t; h}
Do \(x\le t;x\le h\Rightarrow\hept{\begin{cases}t^3-6\le h^3-6\\t^3-6\le x^3-6\end{cases}}\Rightarrow\hept{\begin{cases}t\le h\\t\le x\end{cases}}\)
Suy ra x = t = h.
Phương trình trở thành \(x=x^3-6\Rightarrow x^3-x-6=0\Rightarrow x=2.\)
Vậy phương trình có nghiệm x = 2.
giải phương trình sau:
\(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\left(6-x\right)}=3\)
ĐK: \(-3\le x\le6.\)
Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}\Rightarrow\hept{\begin{cases}a^2+b^2=9\\a+b-ab=3\end{cases}\Rightarrow}\hept{\begin{cases}\left(a+b\right)^2-2ab=9\\\left(a+b\right)-ab=3\end{cases}}}\)
Đặt \(\hept{\begin{cases}a+b=u\\ab=v\end{cases}\left(u,v\ge0\right)\Rightarrow\hept{\begin{cases}u^2-2v=9\\u-v=3\end{cases}\Rightarrow}\hept{\begin{cases}u^2-2u-3=0\\v=u-3\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}u=3\\v=0\end{cases}\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}}}\)
Th1: \(\hept{\begin{cases}a=3\\b=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=3\\\sqrt{6-x}=0\end{cases}\Rightarrow}x=6\left(tmđk\right).}\)
Th2: \(\hept{\begin{cases}a=0\\b=3\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=0\\\sqrt{6-x}=3\end{cases}\Rightarrow}x=-3}\left(tmđk\right).\)
Vậy x = 6 hoặc x = -3.
giải phương trình \(\sqrt[3]{x-7}+\sqrt[3]{x-3}=6\sqrt[6]{\left(x-3\right)\left(x-7\right)}\)
Đặt \(\hept{\begin{cases}\sqrt[6]{x-3}=a\\\sqrt[6]{x-7}=b\end{cases}}\)
\(\Rightarrow a^2+b^2-6ab=0\)
Dễ thây a = 0 không là nghiệm.
Đặt \(b=ta\)
\(\Rightarrow a^2+t^2a^2-6ta^2=0\)
\(\Leftrightarrow t^2-6t+1=0\)
Làm nôt