A = 19^2005 + 11^2004 chia hết cho 10
Bài 1: Chứng minh rằng:
a, 2017 mũ 2018 + 2019 mũ 2018 chia hết cho 10
b, 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
Chứng minh rằng
a) 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
b) 19 mũ 2011 + 11 mũ 2010+ 20 mũ 11 chia hết cho 10
c)9 mũ 2n + 2009 chia hết cho 10
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại
a) A=19 mũ 2005+ 11 mũ 2004 chia hết cho 10
b)B= 2 + 2 mũ 2 + 2 mũ 3 +..... + 2 mũ 60 chia hết cho 3 ; 7 ; 15
giúp mk với
b: \(B=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\cdot\left(2+...+2^{59}\right)⋮3\)
\(B=2+2^2+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
chứng minh rằng : 192005 + 112004 chia hết cho 10
Ta có:
\(19\equiv9\left(mod10\right)\)
\(11=1\left(mod10\right)\)
\(\Rightarrow19^{2005}+11^{2004}⋮10\)
Bài 1 : Chứng minh rằng :
a, ( 5 + 5^2 + 5^3 + .... + 5^100 ) chia hết cho 10
b, (1 + 3 + 3^2 + .... + 3^99 ) chia hết cho 40
c, ( 19^5^2003 + 8^2004 + 5.7^2003 ) chia hết cho 10
d, ( 2^2.n - 1 ) chia hết cho 5
e, ( 19^2005 + 11^2004 ) chia hết cho 10
a) 5+52+53+54+...+5100
= (5+52)+(53+54)+...+(599+5100)
= 30+52.(5+52)+...+598.(5+52)
= 30+52.30+...+598.30
= 30.(1+52+...+598)
Vì 30 chia hết cho 10
=> 30.(1+52+...+598) chia hết cho 10
=> 5+52+53+...+5100 chia hết cho 10
chứng minh 192005 + 112004 chia hết cho 10
Ta thấy: 19 đồng dư với 9(mod 10)
=>19 đồng dư với -1(mod 10)
=>192004 đồng dư với (-1)2004(mod 10)
=>192004 đồng dư với 1(mod 10)
=>192004.19 đồng dư với 1.9(mod 10)
=>192005 đồng dư với 9(mod 10)
Lại có: 11 đồng dư với 1(mod 10)
=>112004 đồng dư với 12004(mod 10)
=>112004 đồng dư với 1(mod 10)
=>192005+112004 đồng dư với 9+1(mod 10)
=>192005+112004 đồng dư với 10(mod 10)
=>192005+112004 đồng dư với 0(mod 10)
=>192005+112004 chia hết cho 10
A=7^2+ 7^3+7^4+7^5 CHIA HẾT CHO CẢ 2, 5 ,7
C=19^2005+ 11^2004 CHIA HẾT CHO 10
Mọi người giúp mình nha
Chứng minh
\(\left(19^{2005}+11^{2004}\right)\)chia hết cho 10
Chứng minh :
\(\left(19^{5^{2003}}+8^{2004}+5.7^{2003}\right)\)chia hết cho 10
Chứng minh :
\(\left(2^{2^n}-1\right)\)chia hết cho 5
chứng minh rằng:
192005+112004
chia hết cho 10
19^2005 = (10+9) ^2005 = 9^2005
mà 9 = -1 (mod 10) => 9^2005 = (-1)^2005 (mod 10) = -1 (mod 10)
11^2004 = 1^2004 (mod 10) = 1(mod 10)
=> 19^2005 + 11^2004 = -1 +1 (mod 10) = 0 (mod 10)
=> 19^2005 + 11^2004 chia hết cho 10