Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phamthiminhanh
Xem chi tiết
Akai Haruma
6 tháng 8 2021 lúc 17:37

a.

\(\sqrt[3]{125}.\sqrt[3]{\frac{16}{10}}.\sqrt[3]{-0,5}=\sqrt[3]{125.\frac{16}{10}.(-0,5)}=\sqrt[3]{-100}\)

b.

\(=1+\frac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{4}+\sqrt[3]{2}+1)}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2})^3-1}=1+\sqrt[3]{2}-1=\sqrt[3]{2}\)

c.

\(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}=\sqrt{3}+\sqrt[3]{(\sqrt{3}+1)^3}=\sqrt{3}+\sqrt{3}+1=2\sqrt{3}+1\)

Akai Haruma
6 tháng 8 2021 lúc 17:40

d.

\(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt[3]{(\sqrt{3}+1)^3}}=\frac{(\sqrt{3}+1)^2}{\sqrt{3}+1}=\sqrt{3}+1\)

e.

Đặt \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}=a; \sqrt[3]{2-10\sqrt{\frac{1}{27}}}=b\)

Khi đó:

$a^3+b^3=4$

$ab=\frac{2}{3}$

$E^3=(a+b)^3=a^3+b^3+3ab(a+b)$
$E^3=4+2E$

$E^3-2E-4=0$
$E^2(E-2)+2E(E-2)+2(E-2)=0$

$(E-2)(E^2+2E+2)=0$

Dễ thấy $E^2+2E+2>0$ nên $E-2=0$

$\Leftrightarrow E=2$

Oriana.su
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2021 lúc 19:56

Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

Nguyễn Lê Phước Thịnh
8 tháng 7 2021 lúc 21:07

Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)

=1

kudo
Xem chi tiết
Thầy Hùng Olm
5 tháng 7 2023 lúc 9:32

a. \(\dfrac{\sqrt{2}.\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7}.\left(\sqrt{3}+\sqrt{5}\right)}=\dfrac{\sqrt{2}}{\sqrt{7}}=\sqrt{\dfrac{2}{7}}\)

d. \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{5-2\sqrt{5}+1}}{\sqrt{5}-1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-1}=\sqrt{5}-1\)

Lê thị nhâm
5 tháng 7 2023 lúc 15:01

\(\sqrt{3-2\sqrt{2}}\)

Triết Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 9 2021 lúc 22:58

d: \(D=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\)

\(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{3\left(x+y\right)}{2}\)

\(=\dfrac{3}{x-y}\)

Hoài An
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 12 2021 lúc 11:35

\(a,=4\sqrt{6}-15\sqrt{6}+\sqrt{\left(2+\sqrt{6}\right)^2}=-11\sqrt{6}+2+\sqrt{6}=2-10\sqrt{6}\\ b,=\dfrac{\sqrt{3}\left(\sqrt{6}-2\right)}{\sqrt{6}-2}+\dfrac{4\left(\sqrt{3}-1\right)}{2}+\left|3\sqrt{3}-12\right|=\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}=10\)

Kiệt Phan
Xem chi tiết
Kiệt Phan
8 tháng 8 2021 lúc 21:44

đề a sai nó là  \(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)

Đỗ Linh Chi
Xem chi tiết
katherina
10 tháng 8 2017 lúc 16:34

A = \(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}=\sqrt[3]{\left(\sqrt{3}+1\right)^3}-\sqrt[3]{\left(\sqrt{3}-1\right)^3}=\sqrt{3}+1-\sqrt{3}+1=2\)

B = \(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\dfrac{\left(\sqrt{3}+1\right)^2}{\sqrt{3}+1}=\sqrt{3}+1\)

C = \(\sqrt[4]{56-24\sqrt{5}}=\sqrt[4]{\left(6-\sqrt{20}\right)^2}=\sqrt[4]{\left(\sqrt{5}-1\right)^4}=\sqrt{5}-1\)

Thịnh Gia Vân
Xem chi tiết
bùi hoàng yến
Xem chi tiết
Diệp Băng Dao
25 tháng 7 2018 lúc 16:40

a)\(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}=\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+\sqrt[3]{8}}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)

\(=\dfrac{\sqrt[3]{2}\left(\sqrt[3]{2}+1+\sqrt[3]{4}\right)}{\sqrt[3]{2}+1+\sqrt[3]{4}}=\sqrt[3]{2}\)

b)\(\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}=\sqrt{3+\sqrt{3}+\sqrt[3]{\left(1+\sqrt{3}\right)^3}}\)

\(=\sqrt{3+\sqrt{3}+1+\sqrt{3}}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(1+\sqrt{3}\right)^2}=1+\sqrt{3}\)

c)\(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\dfrac{\left(1+\sqrt{3}\right)^2}{\sqrt[3]{\left(1+\sqrt{3}\right)^3}}=\dfrac{\left(1+\sqrt{3}\right)^2}{1+\sqrt{3}}\)=\(1+\sqrt{3}\)