a)\(\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}\)
b)\(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\)
Tính:
a)\(\sqrt[3]{125}.\sqrt[3]{\dfrac{16}{10}}.\sqrt[3]{-0,5}\)
b) \(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
c) \(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}\)
d) \(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\)
e) E=\(\sqrt[3]{2+10\sqrt{\dfrac{1}{27}}}+\sqrt[3]{2-10\sqrt{\dfrac{1}{27}}}\)
a.
\(\sqrt[3]{125}.\sqrt[3]{\frac{16}{10}}.\sqrt[3]{-0,5}=\sqrt[3]{125.\frac{16}{10}.(-0,5)}=\sqrt[3]{-100}\)
b.
\(=1+\frac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{4}+\sqrt[3]{2}+1)}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2})^3-1}=1+\sqrt[3]{2}-1=\sqrt[3]{2}\)
c.
\(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}=\sqrt{3}+\sqrt[3]{(\sqrt{3}+1)^3}=\sqrt{3}+\sqrt{3}+1=2\sqrt{3}+1\)
d.
\(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt[3]{(\sqrt{3}+1)^3}}=\frac{(\sqrt{3}+1)^2}{\sqrt{3}+1}=\sqrt{3}+1\)
e.
Đặt \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}=a; \sqrt[3]{2-10\sqrt{\frac{1}{27}}}=b\)
Khi đó:
$a^3+b^3=4$
$ab=\frac{2}{3}$
$E^3=(a+b)^3=a^3+b^3+3ab(a+b)$
$E^3=4+2E$
$E^3-2E-4=0$
$E^2(E-2)+2E(E-2)+2(E-2)=0$
$(E-2)(E^2+2E+2)=0$
Dễ thấy $E^2+2E+2>0$ nên $E-2=0$
$\Leftrightarrow E=2$
rút gọn biểu thức :
A= \(\dfrac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\).
B= \(\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\).
C= \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\).
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
Rút gọn : ( giúp với )
a) \(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b) \(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d) \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
a. \(\dfrac{\sqrt{2}.\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7}.\left(\sqrt{3}+\sqrt{5}\right)}=\dfrac{\sqrt{2}}{\sqrt{7}}=\sqrt{\dfrac{2}{7}}\)
d. \(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{5-2\sqrt{5}+1}}{\sqrt{5}-1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}-1}=\sqrt{5}-1\)
Rút gọn các biểu thức sau :
a,\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b,\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c,\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d, D=\(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\) \(\left(vớix\ne y,x\ne-y\right)\)
d: \(D=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\)
\(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{3\left(x+y\right)}{2}\)
\(=\dfrac{3}{x-y}\)
a) \(2\sqrt{24}-5\sqrt{54}+\sqrt{10+4\sqrt{6}}\)
b) \(\dfrac{\sqrt{18}-\sqrt{12}}{\sqrt{6}-2}+\dfrac{4}{\sqrt{3}+1}+\sqrt{\left(3\sqrt{3}-12\right)^2}\)
\(a,=4\sqrt{6}-15\sqrt{6}+\sqrt{\left(2+\sqrt{6}\right)^2}=-11\sqrt{6}+2+\sqrt{6}=2-10\sqrt{6}\\ b,=\dfrac{\sqrt{3}\left(\sqrt{6}-2\right)}{\sqrt{6}-2}+\dfrac{4\left(\sqrt{3}-1\right)}{2}+\left|3\sqrt{3}-12\right|=\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}=10\)
tính
a. \(\dfrac{\sqrt[3]{125}.\sqrt[3]{\dfrac{16}{10}}.\sqrt[3]{-0,5}}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
b.\(\sqrt[]{3+\sqrt[]{5}+\sqrt[]{10+6\sqrt[]{5}}}\)
đề a sai nó là \(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
Tính :
\(A=\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}\)
\(B=\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\)
\(C=\sqrt[4]{56-24\sqrt{5}}\)
A = \(\sqrt[3]{6\sqrt{3}+10}-\sqrt[3]{6\sqrt{3}-10}=\sqrt[3]{\left(\sqrt{3}+1\right)^3}-\sqrt[3]{\left(\sqrt{3}-1\right)^3}=\sqrt{3}+1-\sqrt{3}+1=2\)
B = \(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\dfrac{\left(\sqrt{3}+1\right)^2}{\sqrt{3}+1}=\sqrt{3}+1\)
C = \(\sqrt[4]{56-24\sqrt{5}}=\sqrt[4]{\left(6-\sqrt{20}\right)^2}=\sqrt[4]{\left(\sqrt{5}-1\right)^4}=\sqrt{5}-1\)
Rút gọn:
a)\(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
b) \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
tính giá trị của các biểu thức
a)\(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
b)\(\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}\)
c)\(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\)
a)\(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}=\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+\sqrt[3]{8}}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
\(=\dfrac{\sqrt[3]{2}\left(\sqrt[3]{2}+1+\sqrt[3]{4}\right)}{\sqrt[3]{2}+1+\sqrt[3]{4}}=\sqrt[3]{2}\)
b)\(\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}=\sqrt{3+\sqrt{3}+\sqrt[3]{\left(1+\sqrt{3}\right)^3}}\)
\(=\sqrt{3+\sqrt{3}+1+\sqrt{3}}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(1+\sqrt{3}\right)^2}=1+\sqrt{3}\)
c)\(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\dfrac{\left(1+\sqrt{3}\right)^2}{\sqrt[3]{\left(1+\sqrt{3}\right)^3}}=\dfrac{\left(1+\sqrt{3}\right)^2}{1+\sqrt{3}}\)=\(1+\sqrt{3}\)