a^+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
ai giup mik vs chieu mik nop rui
Giup mik lam bai nay vs
Cho a,b,c > 0 thõa mãn: \(a^2+b^2+c^2=3\) CMR:
\(\frac{ab}{3+c^2}+\frac{bc}{3+a^2}+\frac{ac}{3+b^2}\le\frac{3}{4}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(ab\leq \frac{(a+b)^2}{4}; bc\leq \frac{(b+c)^2}{4}; ca\leq \frac{(c+a)^2}{4}\). Do đó:
\(\frac{ab}{c^2+3}+\frac{bc}{a^2+3}+\frac{ac}{b^2+3}\leq \frac{1}{4}\underbrace{\left(\frac{(a+b)^2}{c^2+3}+\frac{(b+c)^2}{a^2+3}+\frac{(c+a)^2}{b^2+3}\right)}_{M}(*)\)
Lại có, từ $a^2+b^2+c^2=3$ và áp dụng BĐT Cauchy-Schwarz suy ra:
\(M=\frac{(a+b)^2}{(a^2+c^2)+(b^2+c^2)}+\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}+\frac{(c+a)^2}{(b^2+a^2)+(b^2+c^2)}\)
\(\leq \frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{b^2+a^2}\)
\(\Leftrightarrow M\leq \frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}=3(**)\)
Từ \((*); (**)\Rightarrow \text{VT}\leq \frac{3}{4}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
\(VT=\Sigma\frac{ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le\frac{1}{2}.\Sigma\frac{ab}{\sqrt{a^2+c^2}.\sqrt{b^2+c^2}}\le\frac{1}{4}\left(\Sigma\frac{a^2}{a^2+c^2}+\Sigma\frac{b^2}{b^2+c^2}\right)=\frac{3}{4}\)
(tắt tí ạ, ko chắc)
phân tích đa thức thành nhân tử bằng phương pháp hoán trị và đặt ẩn phụ :
1, ab.(a+b) - bc.( b + c ) +ac.( a- c)
2, ( x2-2x+4). (x2+3x+4)-14
3, a3+b3+c3 - 3abc
làm giúp mik nha . ai nhanh + đúng mik tick .
1) \(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)
\(=ab\left(a+b\right)-b^2c-bc^2+a^2c-ac^2\)
\(=ab\left(a+b\right)-c\left(b^2-a^2\right)-c^2\left(a+b\right)\)
\(=ab\left(a+b\right)-c\left(a+b\right)\left(a-b\right)-c^2\left(a+b\right)\)
\(=\left(a+b\right)\left(ab-ac+bc-c^2\right)\)
\(=\left(a+b\right)\left[a\left(b-c\right)+c\left(b-c\right)\right]\)
\(=\left(a+b\right)\left(b-c\right)\left(a+c\right)\)
ab(a+b)+bc(b+c)+ca(c+a)+3abc phan tich da thuc thanh nhan tu cac ban vao giup minh vs vao trong tuong cua minh ai giup minh cho 2 like luon
ab(a+b)+bc(b+c)+ca(c+a)+3abc
=(ab(a+b)+abc)+(bc(b+c)+abc)+(ca(c+a)+abc)
=ab(a+b+c)+bc(b+c+a)+ca(c+a+b)
=(a+b+c)(ab+bc+ca)
chứng minh cac hằng đẳng thức sau
1)a^2+b^2=(a+b)^2 - 2ab
2)a^4+b^4=(a^2+b^2)^2 - 2a^2b^2
3)a^6+b^6=(a^2+b^2)[(a^2+b^2)^2 - 3a^2b^2]
4)a^6 -b^6=(a^2 -b^2)[(a^2+b^2)^2 -a^2b^2]
Giup mik voi mai mik phai nop rui huhu
\(1.VP\)
\(\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)
\(=a^2+b^2=VT\left(DPCM\right)\)
1/ (a + b)2 - 2ab = a2 + 2ab + b2 - 2ab = a2 + b2 + (2ab - 2ab) = a2 + b2
2/ (a2 + b2)2 - 2a2b2 = a4 + 2a2b2 + b4 - 2a2b2 = a4 + b4 + (2a2b2 - 2a2b2) = a4 + b4
rảnh ko, tự phân tích hết cái đống hổ lốn lộn xộn ra là làm được, đăng lên làm j, c ko phải ng lp 8, tối đoán thế, tự phân tích, triệt tiêu đi, là ra vế trái, đơn giản, lằng nhằng lôi thôi lếch thếch nhưng nó hợp vs cái ng như c đấy
a, Cmr : ( a + b + c ). ( a^2 + b^2 + c^2 -ab - ac - bc ) = a^3 + b^3 + c^3 -3abc
b, Áp dụng :
a+b+c= 0 thì
a^3 + b^3 + c^3 = 3abc
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
b,
Ta có:
\(\left(a+b+c\right)^3=0\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)
bài 1 Chứng minh rằng
Nếu a,b,c lớn hơn hoặc bằng 0 thì a3+b3+c3 lớn hơn hoặc bằng 3abc
bài 2 chứng minh rằng
Nếu a2+b2+c2=ab+ac+bc thì a=b=c
ai lam dc bai nay k giup minh voi
a2+b2+c2=ab+ac+bc
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0 và a-c=0 và b-c=0
<=>a=b=c
1. CMR : a+b+c=0 thi a^4+b^4+c^4=2(ab+bc+ca)^2
2. CMR : a^2/b^2 + b^2/c^2 + c^2/a^2 >= c/b + b/a + a/c
M.N GIUP MK VS , TOI NAY MK PHAI NOP ROI
1)a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1)
CẦn chứng minh:
2(a^4 + b^4 + c^4) = (a² + b² + c²)²
<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)
<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)
<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )
<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))
<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)
<=> 8.(ab²c + bc²a + a²bc) = 0
<=> 8abc.(a + b + c) = 0
<=> 0 = 0 (đúng), Vì a + b + c = 0
=> Đpcm
2Quy đồng hết lên là ra thui :) . Đặt thế này cho dễ : x = a/b , y = b/c , z = c/a => xyz = 1
BĐT cần Cm <=> x² + y² + z² ≥ 1/x + 1/y + 1/z
<=> x² + y² + z² ≥ xy + yz + zx ( BĐT quen thuộc đây mà )
<=> 2(x² + y² + z² ) - 2(xy + yz + zx) ≥ 0
<=> (x - y)² + (y - z)² + (z - x)² ≥ 0 ( Luon dung ) => DPCM
Dấu = xảy ra <=> x = y = z <=> a = b = c
Vậy a²/b² + b²/c² + c²/a² ≥ c/b + b/a + a/c . Dấu = xảy ra <=> x = y = z <=> a = b = c
- - - - - - - - - - - - -- - - - - -
Áp dụng a^3+b^3+c^3+3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
Biết 1/a+1/b+1/c=0
Tính A=bc/a^2 + ca/b^2 +ab/c^2
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)
\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)
Ta có
\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)
\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)
\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)
\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
giup mik vs cho b^2 = ac . chứng minh (a^2+b^2) / (b^2+c^2) = a/c