Vẽ tam giác \(\widehat{AHC}\) vuông ở H, có đường phân giác CF, Gỉa sử \(\widehat{A}=32^o\)
a, Tính \(\widehat{ACH}\) và \(\widehat{HCF}\)
b, Tính \(\widehat{HFC}\)
1/ vẽ tam giác . Giả sứ ABC = \(80^o\) , ACB = \(40^o\). hai tia phân giác kẻ từ đỉnh B và đỉnh C cắt tại I . tính IBC + và tính BIC
2/ vẽ \(\Delta ABC\). Giả sử A = 60. hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại điểm I
a/ so sánh \(\widehat{IBC}\) + \(\widehat{ICB}\) với \(\widehat{ABC}+\widehat{ACB}\)
b/ tính BIC
3/ vẽ\(\Delta ABC\) vuông tại A . giả sứ B = 55 .tính C
4/ \(\Delta AHC\) vuông ở H , có đường phân giác CF . giả sử A = 32
1/ tính ACH và HCF 2/ tính HFC
vẽ tam gác AHC vuông tại H , có đường phân giác CF . Giả sử A=32 độ .
1) tính ACH và HCF . 2) Tính HFCvẽ tam gác AHC vuông tại H , có đường phân giác CF . Giả sử A=32 độ .
1) tính ACH và HCF . 2) Tính HFCcho tam giác AHC vuông ở H đường phân giác CF góc A = 32 a) tính góc ACH , HCF b) tính HFC
Vẽ tam giác ABC. Gỉa sử \(\widehat{A}\) = 60o. Hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại I.
a, So sánh \(\widehat{IBC}+\widehat{ICB}\) với \(\widehat{ABC}+\widehat{ACB}\)
b, Tính \(\widehat{BIC}\)
Cho tam giác ABC , các đường phân giác AB , BE , CF gặp nhau tại I .
a, Tính \(\widehat{IAC}+\widehat{IBC}+\widehat{ICA}\)
b, Kẻ IH vuông góc với BC tại H . CMR : \(\widehat{BIH}=\widehat{CID}\)
1/ vẽ tam giác . Giả sứ ABC = \(80^o\) , ACB = \(40^o\). hai tia phân giác kẻ từ đỉnh B và đỉnh C cắt tại I . tính IBC + và tính BIC
2/ vẽ \(\Delta ABC\). Giả sử A = 60. hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại điểm I
a/ so sánh \(\widehat{IBC}\) + \(\widehat{ICB}\) với \(\widehat{ABC}+\widehat{ACB}\)
b/ tính BIC
3/ vẽ\(\Delta ABC\) vuông tại A . giả sứ B = 55 .tính C
4/ \(\Delta AHC\) vuông ở H , có đường phân giác CF . giả sử A = 32
1/ tính ACH và HCF 2/ tính HFC
Bài 3:
góc C=90-55=35 độ
Bài 1:
góc IBC=góc ABC/2=40 độ
góc ICB=40/2=20 độ
=>góc IBC+góc ICB=60 độ
=>góc BIC=120 độ
Cho tam giác ABC nhọn có đường cao AH ,phân giác BE và \(\widehat{BAH=2.\widehat{C}}\)
a,Tính\(\widehat{AEB}\)
b, Cmr HE là tia phân giác của \(\widehat{AHC}\)
cho tam giác ABC có\(\widehat{B}-\widehat{C}=\alpha\). Tia phân giác của góc a cắt BC ở D.
a)Tính \(\widehat{ADC},\widehat{ADB}\)
b)Vẽ AH vuông góc với BC , tính \(\widehat{HAD}\)