Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phúc
Xem chi tiết
Thắng Nguyễn
14 tháng 5 2016 lúc 15:01

e Hoàng Phúc tui co bai tuong tu ne

Đặng Quỳnh Ngân
14 tháng 5 2016 lúc 15:06

M = 2(a-2ab+b) / 2(a+2ab+b) =ab/9ab = 1/9

lưu ý: a;b binh phuong nhé tui làm bieng viêt

Hoàng Phúc
14 tháng 5 2016 lúc 15:12

m.n ko phải trả lời nữa,biết làm rồi

Nguyễn Khoa Nguyên
Xem chi tiết
shitbo
22 tháng 6 2019 lúc 11:12

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

Phong Du
Xem chi tiết
Nguyễn Xuân Anh
29 tháng 12 2017 lúc 23:15

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

Phong Du
29 tháng 12 2017 lúc 21:07

Bạn nào giúp tớ với!

Phong Du
29 tháng 12 2017 lúc 21:38

ai giúp tui không?!!

Đỗ Thanh Huyền
Xem chi tiết
Hoàng Phúc
8 tháng 5 2016 lúc 8:41

\(2a^2+2b^2=5ab\)

<=>\(2a^2-5ab+2b^2=0\)

<=>\(2\left(a^2-\frac{5}{2}ab+b^2\right)=0\) <=> \(a^2-\frac{5}{2}ab+b^2=0\)

<=>\(a^2-2.a.\frac{5}{4}.b+b^2=0\)

<=>\(\left(a-\frac{5}{4}b\right)^2=0\) <=> \(a-\frac{5}{4}b=0\) <=> \(a=\frac{5}{4}b\)

Ta có: \(M=\frac{a+b}{a-b}=\frac{\frac{5}{4}b+b}{\frac{5}{4}b-b}=\frac{\left(\frac{5}{4}+1\right).b}{\left(\frac{5}{4}-1\right).b}=\frac{\frac{9}{4}b}{\frac{1}{4}b}=\frac{\frac{9}{4}}{\frac{1}{4}}=9\)

Vậy M=9

Hoàng Phúc
8 tháng 5 2016 lúc 8:47

(*) bài này có áp dụng HĐT:\(\left(a-b\right)^2=a^2-2ab+b^2\)

02-Nguyễn Thiện Anh
Xem chi tiết
Giang Giang
Xem chi tiết
Dương Đình Hưởng
Xem chi tiết
Nguyễn Linh Chi
22 tháng 2 2019 lúc 9:12

Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm tại link này nhé!

Kiệt Nguyễn
22 tháng 2 2019 lúc 9:47

​                           Giải

Ta có : \(2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)


Vì \(b>a>0\) nên loại trường hợp a = 2b

\(\Leftrightarrow2a=b\)

\(\Leftrightarrow\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

Vậy \(A=-3\)

Hoàng hôn  ( Cool Team )
29 tháng 9 2019 lúc 20:54

Ta có : 2a^2+2b^2=5ab2a2+2b2=5ab

\Leftrightarrow2a^2-5ab+2b^2=0⇔2a2−5ab+2b2=0

\Leftrightarrow2a^2-4ab-ab+2b^2=0⇔2a2−4abab+2b2=0

\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0⇔2a(a−2b)−b(a−2b)=0

\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0⇔(2ab)(a−2b)=0

\(\Leftrightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)


Vì b&gt;a&gt;0b>a>0 nên loại trường hợp a = 2b

\Leftrightarrow2a=b⇔2a=b

\Leftrightarrow\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3⇔aba+b​=a−2aa+2a​=−a3a​=−3

Vậy A=-3A=−3

Ngân
Xem chi tiết
Đinh Đức Hùng
15 tháng 8 2017 lúc 20:17

Vì \(a>b>0\Rightarrow A=\frac{a+b}{a-b}>0\)

\(2a^2+2b^2=5ab\Rightarrow a^2+b^2=\frac{5ab}{2}\)

Ta có : \(E^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{a^2+b^2+2ab}{a^2+b^2-2ab}=\frac{\frac{5ab}{2}+2ab}{\frac{5ab}{2}-2ab}=\frac{\frac{9}{2}ab}{\frac{1}{2}ab}=\frac{\frac{9}{2}}{\frac{1}{2}}=9\)

\(E^2=9\Rightarrow E=3\)(vì E>0)

Vậy \(E=3\)

Kurosaki Akatsu
15 tháng 8 2017 lúc 20:18

Có : \(2a^2+2b^2=5ab\Rightarrow\hept{\begin{cases}2a^2+2b^2-4ab=ab\\2a^2+2b^2+4ab=9ab\end{cases}}\Rightarrow\hept{\begin{cases}2\left(a-b\right)^2=ab\\2\left(a+b\right)^2=9ab\end{cases}}\Rightarrow\hept{\begin{cases}a-b=\sqrt{\frac{ab}{2}}\\a+b=\sqrt{\frac{9ab}{2}}\end{cases}}\)

\(\Rightarrow E=\frac{\sqrt{\frac{9ab}{2}}}{\sqrt{\frac{ab}{2}}}=\sqrt{\frac{\frac{9ab}{2}}{\frac{ab}{2}}}=\sqrt{\frac{9ab}{2}.\frac{2}{ab}}=\sqrt{9}=3\)

Trần Đức
15 tháng 8 2017 lúc 20:20

Ta có \(2a^2+2b^2=5ab\Rightarrow a^2+b^2=\frac{5}{2}.ab\)

        \(E^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{a^2+2ab+b^2}{a^2-2ab+b^2}=\frac{\frac{5}{2}ab+2ab}{\frac{5}{2}ab-2ab}\)

                 \(=\frac{\frac{9}{2}ab}{\frac{1}{2}ab}=9\)

vì \(a>b>0\Rightarrow E>0\Rightarrow E=3\)

Nguyễn Thế Nhật
Xem chi tiết