Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Tú

Tính giá trị của phân thức\(M=\frac{a+b}{a-b}\)biết rằng 2a^2 + 2b^2 = 5ab và a > b > 0.

ST
28 tháng 8 2018 lúc 16:27

Ta có: \(2a^2+2b^2=5ab\Leftrightarrow2\left(a^2+2ab+b^2\right)=9ab\Leftrightarrow\left(a+b\right)^2=\frac{9ab}{2}\)

Mặt khác: \(2a^2+2b^2=5ab\Leftrightarrow2\left(a^2-2ab+b^2\right)=ab\Leftrightarrow\left(a-b\right)^2=\frac{ab}{2}\)

Do đó: \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\left(\frac{a+b}{a-b}\right)^2=\frac{\frac{9ab}{2}}{\frac{ab}{2}}=9\Leftrightarrow M=\frac{a+b}{a-b}=\pm3\)

Mà a > b > 0 => M = 3

Doraemon
30 tháng 8 2018 lúc 10:25

Ta có: \(2a^2+2b^2=5ab\Leftrightarrow2\left(a^2+2ab+b^2\right)=9ab\Leftrightarrow\left(a+b\right)^2=\frac{9ab}{2}\)

Mặt khác: \(2a^2+2b^2=5ab\Leftrightarrow2\left(a^2-2ab+b^2\right)=ab\Leftrightarrow\left(a-b\right)^2=\frac{ab}{2}\)

Do đó: \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\left(\frac{a+b}{a-b}\right)^2=\frac{\frac{9ab}{2}}{\frac{ab}{2}}=9\Leftrightarrow M=\frac{a+b}{a-b}=\pm3\)

Mà \(a>b>0\Rightarrow M=3\)


Các câu hỏi tương tự
Nguyễn Khoa Nguyên
Xem chi tiết
Phong Du
Xem chi tiết
02-Nguyễn Thiện Anh
Xem chi tiết
Giang Giang
Xem chi tiết
Nguyễn Thế Nhật
Xem chi tiết
GV
Xem chi tiết
vu thi nhu quynh
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Linh Chi
Xem chi tiết